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Introduction

The study of Diophantine equations, that is, the study of integer or rational solutions of

polynomial equations with integer coefficients, is one of the most classical problems in

number theory. From the perspective of algebraic geometry, such equations define alge-

braic varieties, and their integral or rational solutions correspond to integral or rational

points on these varieties. This geometric viewpoint forms the basis of Diophantine geome-

try, which seeks to study rational solutions of Diophantine equations using the geometric

structure of the associated varieties.

In dimension one, i.e. for algebraic curves, the behaviour of rational points is con-

trolled by the genus. More precisely, if C is a smooth curve of genus g defined over a

number field K, then:

• If g = 0, then either the set of K-rational points C(K) is empty, or C is isomor-

phic over K to P1; in the latter case C(K) is infinite and Zariski dense in C(C). In

particular, this is always the case after passing to a suitable finite extension of K.

• If g = 1, then either C(K) is empty or C is an elliptic curve over K. In the second

case, the Mordell–Weil theorem implies that C(K) is a finitely generated abelian

group. For a suitable finite extension L/K, C(L) is an infinite set and, thus, Zariski

dense in C(C).

On the other hand, when g ≥ 2, it was originally conjectured by Mordell [Mor22] that

C(K) is finite. Mordell’s conjecture was proved by Faltings in 1983 [Fal83], following

a strategy that involved reducing the problem to the Shafarevich conjecture via earlier

work of Parshin.

Theorem (Faltings). Let C be a smooth projective curve of genus g ≥ 2 defined over a number

field K. Then C(K) is a finite set.

An alternative proof of Faltings’s theorem was given by Vojta [Voj91], using tech-

niques from Diophantine approximation. Subsequent simplifications of Vojta’s argument

were proposed by Faltings himself [Fal91] and by Bombieri [Bom90]. More recently, a

proof relying on p-adic Hodge theory was obtained by Lawrence and Venkatesh [LV20].
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Another possible approach to proving Faltings’s theorem begins by observing that if

C(K) ̸= ∅, then one can consider the curve C as embedded into its Jacobian variety JC
(via the Abel-Jacobi map), yielding an identification

C(K) = C ∩ JC(K) ⊆ JC .

By the Mordell–Weil theorem, the group ofK-rational points JC(K) is finitely generated.

Thus, the set of rational points on C can be viewed as the intersection of a subvariety of

an abelian variety with a finitely generated subgroup of the ambient variety, which we

expect to be finite.

This perspective naturally invites generalization. One may consider more general

ambient varieties, such as algebraic tori, abelian or semiabelian varieties; replace JC(K)
with more general subgroups, such as the torsion points, finitely generated subgroups,

or even subgroups of finite rank; and replace C with higher-dimensional subvarieties.

For example, replacing JC(K) with the set of torsion points yields the original formu-

lation of the Manin-Mumford conjecture, which we will revisit in more detail in Chapter 1.

This reinterpretation of Diophantine finiteness questions in terms of intersections be-

tween subvarieties and arithmetic subsets of algebraic groups leads to a broader frame-

work: the theory of unlikely intersections. The central idea is that one expects the in-

tersection between a fixed subvariety (satisfying certain genericity assumptions) and a

countable family of subvarieties with suitable properties to be non-dense, or even fi-

nite. This setting unifies several important statements in Diophantine geometry, such as

the above-mentioned Manin–Mumford conjecture, the Mordell–Lang conjecture, and the

André–Oort conjecture.

More specifically, given two subvarieties V,W of an ambient variety X such that

dimX > dimV + dimW , we usually expect the intersection V ∩ W to be empty. For

this reason, if V ∩W ̸= ∅, we say that the intersection is “unlikely”. As mentioned before,

we are interested in the case in which V is fixed and W varies in a countable family of

subvarieties, known as “special subvarieties”. In this setting, the Zilber–Pink conjecture,

independently formulated in various contexts by Zilber, Pink, and Bombieri, Masser and

Zannier, predicts that if V is not contained in a proper special subvariety, then its inter-

section with the union of special subvarieties of codimension ≥ dimV + 1 is not Zariski

dense.

In this thesis, we investigate several instances of the Zilber–Pink conjecture, with par-

ticular focus on the setting of families of abelian varieties. After introducing the general

conjecture and surveying known results in Chapter 1, we focus on two cases: curves in

products of powers of elliptic schemes (Chapter 3) and curves in abelian schemes (Chap-

ter 4). The main contributions of the thesis are Theorems 3.2 and 4.1, which establish new

cases of the conjecture in these settings.
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Structure of the thesis

We conclude this introduction with a brief overview of the contents of each chapter.

In Chapter 1, we provide an overview of the main results about unlikely intersections,

with particular emphasis on the Zilber–Pink conjecture. We review the current state of

the art, focusing on the cases of algebraic tori, abelian varieties and, more importantly,

families of abelian varieties.

Chapter 2 is dedicated to height functions. We recall the definitions of Weil heights

on projective varieties and canonical heights on abelian varieties, along with their main

properties. We also prove the first original result of this thesis, Theorem 2.33, which

provides explicit bounds for the canonical height of f(P ) in terms of the canonical height

of P , where f is an endomorphism of an abelian variety A defined over Q and P ∈ A(Q).

In Chapter 3, we study the Zilber–Pink conjecture in the case of a curve contained in

a product of two fibered powers of the Legendre family. The main result is Theorem 3.2,

which proves finiteness of the intersection of the curve with proper algebraic subgroups

of fibers for which there are non trivial homomorphisms between the two powers. This

chapter is based on the preprint [Fer24], currently under review, and is presented here

with only minor changes.

In Chapter 4, we further explore the Zilber–Pink conjecture for curves in abelian

schemes. The main result of this chapter, Theorem 4.1, considers the intersections of a

curve with the union of all proper algebraic subgroups of the fibers with complex multi-

plication, extending a previous result by Barroero. The material of this chapter, together

with Section 2.6, will form the basis of an article to be posted on arXiv, before submitting

it to a journal.
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Chapter 1

Unlikely intersections and the

Zilber–Pink conjecture

This chapter introduces the topic of Unlikely Intersections, a class of problems in Diophan-

tine geometry that arise from heuristic expectations on the dimension of intersections

between subvarieties. The study of unlikely intersections plays a central role in Dio-

phantine geometry, and some fundamental references on this topic are the books [Pil22]

and [Zan12], which provide a comprehensive treatment of the main results, conjectures,

and techniques, and the survey article [Cap23].

The central idea which motivates most of the results of this field originates from a

classical result in algebraic geometry:

Theorem 1.1 (Lemma 43.13.4 (0AZP) from [Sta24]). LetX be a smooth variety and let V,W ⊆
X be closed irreducible subvarieties. Then, every irreducible component of V ∩W has dimension

at least dim(V ) + dim(W ) − dim(X).

For general subvarieties V,W ⊆ X , one typically expects1

dim(V ∩W ) = dim(V ) + dim(W ) − dim(X)

and if dim(V ) + dim(W ) < dim(X), the intersection V ∩W should be empty. If, instead,

V ∩W ̸= ∅ despite this expectation, we say that the intersection is unlikely.

More generally, problems concerning unlikely intersections can be formulated as fol-

lows. Let X be an ambient variety, and let F be a countable collection of subvarieties

of X satisfying certain properties (see [BD24], [Ull17] and [KUY15] for some examples),

which we refer to as special subvarieties. We study the intersections of a fixed irreducible

subvariety V ⊆ X with the special subvarieties W ∈ F satisfying dimV < codimW .

Heuristically, we expect V ∩ W = ∅ for “most” W ∈ F , unless a specific geometric or

1This expectation can be formalized by using suitable moduli spaces.
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1. UNLIKELY INTERSECTIONS AND THE ZILBER–PINK CONJECTURE

arithmetic relation exists between V and F . If no such relation exists, we expect the

union ⋃
W ∈F

dim V <codim W

(V ∩W )

not to be Zariski dense in V .

In this thesis we will always work over C (or more generally, over a field of character-

istic zero), as some of the results stated in this chapter are false in positive characteristic.

In the rest of this chapter we will always assume the varieties to be defined over C, unless

otherwise stated.

Example 1.2. A natural example of this setting arises in semiabelian varieties, for which

we can choose F to be the collection of the irreducible components of the algebraic sub-

groups or, equivalently, the translates of semiabelian subvarieties by torsion points, also

known as torsion cosets. We will explore problems in this setting in Sections 1.2 and 1.3.

One of the simplest problems in this area occurs when considering special subvari-

eties of dimension 0, known as special points. In this case, the set of special points in any

special subvariety is Zariski dense, whereas for a non-special subvariety, we expect the

set of special points not to be Zariski dense. In the setting of semiabelian varieties, where

the special points are precisely the torsion points, this expectation is formalized by the

following theorem.

Theorem 1.3 (Manin-Mumford conjecture). Let X be a semiabelian variety and V ⊆ X

be an irreducible subvariety. Then V contains only finitely many maximal special subvarieties.

Equivalently, the set of special points in V is Zariski dense in V if and only if V is special.

Independently proposed by Manin and Mumford in the 1960s for curves embedded

in their Jacobians, the conjecture was later proven by Laurent [Lau84] for tori, by Ray-

naud [Ray83a, Ray83b] for abelian varieties, and by Hindry [Hin88] for semiabelian vari-

eties. Since then, several alternative proofs have been proposed. Notably, Ullmo [Ull98]

and Zhang [Zha98a] proved a stronger version conjectured by Bogomolov, extending the

result to points of sufficiently small Néron–Tate height. Pila and Zannier [PZ08] provided

another approach using techniques from o-minimality.

In general, these questions are typically studied in the broader context of (mixed)

Shimura varieties, originally introduced by Deligne [Del71, Del79], building on special

cases introduced by Shimura [Shi63] as moduli spaces of abelian varieties with additional

structures. A Shimura variety naturally contains a distinguished collection of subvari-

eties, known as subvarieties of Hodge type, which serve as its special subvarieties.

In this thesis, we focus on specific examples of mixed Shimura varieties, particularly

families of abelian varieties, and therefore we will not introduce the general theory. For
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1.1. THE ZILBER–PINK CONJECTURE

further background, we refer to [Mil05] and [Pin05a]. Nevertheless, for the sake of gen-

erality, we will state all key conjectures in the setting of mixed Shimura varieties.

A natural generalization of the Manin-Mumford conjecture to Shimura varieties was

proposed by André and Oort.

Theorem 1.4 (André-Oort conjecture). Let X be a (mixed) Shimura variety and V ⊆ X be a

subvariety. Then V contains only finitely many maximal special subvarieties. Equivalently, the

set of special points in V is Zariski dense in V if and only if V is special.

The André-Oort conjecture was posed independently by André [And89, Section X.4]

for curves in general Shimura varieties and by Oort [Oor97] for general subvarieties of

the moduli space of principally polarized abelian varieties Ag. It was first proved by

Klinger, Ullmo and Yafaev [KY14, UY14] under the Generalized Riemann Hypothesis,

using ideas by Edixhoven [Edi05]. It was later proved unconditionally for Cn by Pila

[Pil11] and for Ag by Tsimerman [Tsi18]. It was finally proved in full generality in 2022

by Pila, Shankar and Tsimerman [PST+22], building on work of Binyamini, Schmidt and

Yafaev [BSY23] and Gao [Gao16].

1.1 The Zilber–Pink conjecture

We now turn to the main conjecture in the field of unlikely intersections, the Zilber–Pink

conjecture. It was proposed independently by Bombieri, Masser and Zannier [BMZ99]

in the case of tori, by Zilber [Zil02] for semiabelian varieties and by Pink [Pin05b] in

the more general setting of mixed Shimura varieties. Its statement follows the general

heuristic outlined above, providing a broad formulation that encompasses most prob-

lems concerning unlikely intersection.

Conjecture 1.5 (Zilber–Pink, Version 1). Let X be a mixed Shimura variety or a semiabelian

variety. For every integer n ≥ 0, denote by X [n] the union of all special subvarieties of X of

codimension at least n. Then, if V ⊆ X is an irreducible subvariety not contained in any proper

special subvariety of X ,

V ∩X [dimV+1]

is not Zariski dense in V .

This formulation, stated by Pink in [Pin05b, Conjectures 1.3 and 5.1], is sometimes

referred to as Pink’s conjecture.

Remark 1.6. In this thesis, we will deal mainly with the case in which V ⊆ X is a curve.

In particular, notice that in this case Conjecture 1.5 reduces to the statement that, if V is

not contained in any proper special subvariety, then V ∩X [2] is a finite set.

In what follows, we explore equivalent formulations.

3



1. UNLIKELY INTERSECTIONS AND THE ZILBER–PINK CONJECTURE

Definition 1.7. Let X be a mixed Shimura variety or a semiabelian variety and V ⊆ X

a subvariety. A subvariety W ⊆ V is called atypical (for V in X) if there exists a special

subvariety S such that W is an irreducible component of V ∩ S and

dimW > dimV + dimS − dimX.

Conjecture 1.8 (Zilber–Pink, Version 2). Let X be a mixed Shimura variety or a semiabelian

variety and V ⊆ X be an irreducible subvariety. Then V contains only finitely many maximal

atypical subvarieties.

Note that if V is contained in a proper special subvariety of X , then V is an atypical

subvariety of itself, and so the conjecture holds trivially.

As the irreducible components of the intersection of two special subvarieties are again

special, we introduce the following definition.

Definition 1.9. Let X be a mixed Shimura variety or a semiabelian variety and let V ⊆
X be an irreducible subvariety. We denote by ⟨V ⟩ the smallest special subvariety of X

containing V (i.e. the intersection of all the special subvarieties containing V ), which is

often called the special closure of V .

The following definition provides a way to measure how far a subvariety is from

being special.

Definition 1.10. LetX be a mixed Shimura variety or a semiabelian variety and let V ⊆ X

be an irreducible subvariety. We define the defect of V as

δ(V ) = dim ⟨V ⟩ − dimV.

We say that a subvariety W ⊆ V is optimal for V (in X) if for every subvariety U ⊆ X

such that W ⊂ U ⊆ V , we have δ(W ) < δ(U).

Notice that V is clearly an optimal subvariety of itself. Moreover, ifW ⊂ V is optimal,

then we must have δ(W ) < δ(V ), that is

dim ⟨W ⟩ − dimW = δ(W ) < δ(V ) = dim ⟨V ⟩ − dimV

which is equivalent to

dimW > dimV + dim ⟨W ⟩ − dim ⟨V ⟩

and this implies that W is atypical for V in ⟨V ⟩. Conversely, W is atypical for V in X if

δ(W ) < codim(V ).

4



1.2. UNLIKELY INTERSECTIONS IN MULTIPLICATIVE GROUPS

Conjecture 1.11 (Zilber–Pink, Version 3). Let X be a mixed Shimura variety or a semiabelian

variety and V ⊆ X be an irreducible subvariety. Then V contains only finitely many optimal

subvarieties.

Although these formulations appear different, Conjectures 1.5, 1.8 and 1.11 are in fact

equivalent, provided that each of them is assumed to hold for all ambient varieties (and

not just for a fixed instance). The equivalence of Conjectures 1.5 and 1.8 is proved in

Section 12 of [BD24], while Lemma 2.7 of [HP16] proves the equivalence of Conjectures

1.8 and 1.11.

Remark 1.12. A subvariety S ⊆ X is special if and only if δ(S) = dim ⟨S⟩ − dimS = 0.

Thus, any maximal special subvariety contained in V is optimal. Therefore, the Zilber–

Pink conjecture implies both the Manin-Mumford conjecture and the André-Oort conjec-

ture (Theorems 1.3 and 1.4).

1.2 Unlikely intersections in multiplicative groups

Having outlined the general formulation of the Zilber–Pink conjecture, we now examine

specific instances in particular settings, starting with algebraic tori. The case of the multi-

plicative group Gn
m has been extensively studied, leading to a series of important partial

results that provide evidence for the conjecture in this context.

A prototypical example, and one of the first problems in this area, was posed by

Lang in the 1960s and independently proved by Ihara, Serre, and Tate (see [Lan65] for an

account of these proofs).

Theorem 1.13. Let f(X,Y ) ∈ C[X,Y ] be an irreducible polynomial such that there exist in-

finitely many pairs of roots of unity (µ1, µ2) satisfying f(µ1, µ2) = 0. Then, up to scaling, f has

the form

XnY m − ζ or Xn − ζY m

where n,m ∈ N are not both zero and ζ is a root of unity.

As discussed in Example 1.2, the points (µ1, µ2), where µ1, µ2 are roots of unity, corre-

spond precisely to the special points of G2
m. Similarly, the curves defined by the equations

XnY m = ζ and Xn = ζY m, where ζ is a root of unity, are special subvarieties of G2
m since

they are translates of algebraic subgroups by torsion points.

Thus, we can naturally interpret this theorem as follows: an irreducible curve C ⊆
G2
m, defined by an equation f(X,Y ) = 0, contains infinitely many special points if and

only if it is itself a special subvariety. In other words, this result is a direct instance of

the Manin-Mumford conjecture (Theorem 1.3) for G2
m, which, for G2

m, is equivalent to the

Zilber–Pink conjecture.

5



1. UNLIKELY INTERSECTIONS AND THE ZILBER–PINK CONJECTURE

Regarding the Zilber–Pink conjecture for Gn
m, we recall that (Gn

m)[d] denotes the union

of all special subvarieties, i.e., the torsion cosets, of codimension at least d. In [BMZ99],

Bombieri, Masser, and Zannier proved that if V ⊆ Gn
m is an irreducible curve defined

over Q and not contained in a translate of a proper algebraic subgroup, then

V ∩ (Gn
m)[2] =

⋃
codimH≥2

(V ∩H),

where the union is taken over all torsion cosets of codimension at least 2, is finite (see also

[CMPZ16] for an alternative proof using o-minimality). Note that Conjecture 1.5 suggests

that this finiteness should still hold under the weaker assumption that V is not contained

in a torsion translate of a proper algebraic subgroup.

Conjecture 1.5 for curves in Gn
m defined over Q was later established by Maurin

[Mau08].

Theorem 1.14 (Maurin). Let V ⊆ Gn
m be an irreducible curve, defined over Q and not contained

in any proper torsion coset of Gn
m. Then, V ∩ (Gn

m)[2] is a finite set.

In the same year, Bombieri, Masser, and Zannier [BMZ08b] extended Maurin’s result

to curves defined over C. Additionally, in collaboration with Habegger, they provided

an alternative proof of Theorem 1.14 in [BHMZ10].

Notice that, in the case of hypersurfaces in Gn
m, the Zilber–Pink conjecture is equiva-

lent to Theorem 1.3. Beyond the case of curves, significant progress has also been made

in studying subvarieties of codimension 2, with Bombieri, Masser, and Zannier [BMZ07]

proving the following result.

Theorem 1.15 (Bombieri-Masser-Zannier). Let V ⊆ Gn
m be an irreducible subvariety of di-

mension n−2, defined over Q and not contained in any torsion coset of Gn
m. Then, V ∩(Gn

m)[n−1]

is not Zariski dense in V .

However, with the exception of some results for planes [BMZ08a], the general case

of surfaces in Gn
m remains open. Nonetheless, there have been several important partial

results for general subvarieties of Gn
m.

Definition 1.16. Let G be a semiabelian variety and V ⊆ G. An irreducible subvariety

W ⊆ V is called anomalous if there exists a translate T of a proper algebraic subgroup of

G such that W ⊆ V ∩ T and

dimW > max {0, dimV + dimT − dimG} .

Moreover, we denote by V oa the complement in V of the union of its anomalous subva-

rieties.

6



1.3. UNLIKELY INTERSECTIONS IN ABELIAN VARIETIES

In particular, for G = Gn
m, V oa is open in V by Theorem 1.4 of [BMZ07].

In this context, we have the following result of Habegger [Hab09b], which gives a

uniform bound for the Weil height (see Chapter 2 for the definition of Weil height) of the

points in V oa that lie in a torsion coset of the right codimension (see also [Hab17] for an

effective result).

Theorem 1.17 (Bounded Height conjecture). Let V ⊆ Gn
m be an irreducible subvariety of

dimension d defined over Q. Then, V oa ∩ (Gn
m)[d] is a set of bounded Weil height.

Notice that if V is a curve, then the only possible anomalous subvariety is V itself,

if V is contained in a translate of a proper algebraic subgroup. Thus, V oa in this case is

either empty or all of V , recovering Theorem 1 of [BMZ99].

Furthermore, Theorem 1.17 allows to prove the following, which provides an impor-

tant partial result towards the Zilber–Pink conjecture for Gn
m.

Theorem 1.18 ([Hab09b, Corollary 1.4]). Let V ⊆ Gn
m be an irreducible subvariety defined

over Q. Then, V oa ∩ (Gn
m)[dimV+1] is a finite set.

Indeed, if V oa ̸= ∅, then

V ∩ (Gn
m)[dimV+1] ⊆ (V \ V oa) ∪

(
V oa ∩ (Gn

m)[dimV+1]
)
.

As V oa ̸= ∅ is open by [BMZ07, Theorem 1.4], the right side is a proper closed subset of

V , and therefore the Zilber–Pink conjecture holds for V .

1.3 Unlikely intersections in abelian varieties

We now turn our attention to abelian varieties, where the Zilber–Pink conjecture has seen

substantial progress in recent years. As for multiplicative groups, recall that the special

subvarieties of an abelian variety are precisely the translates of the abelian subvarieties

by torsion points, again called torsion cosets. Recall also that for an abelian variety A

and a non-negative integer n, we denote by A[n] the union of all special subvarieties of

codimension at least n.

The abelian Bounded Height Conjecture, i.e. the analogue of Theorem 1.17 for abelian

varieties, was established by Habegger in [Hab09a] (with a partial result for curves due

to Rémond [Ré05, Lemme 3.3]). Building on another result by Rémond [Ré07, Corollaire

1.6], Habegger and Pila [HP16, Theorem 1.1] proved Conjecture 1.5 for curves in abelian

varieties defined over Q. More recently, Barroero and Dill [BD22] extended this result to

curves in abelian varieties defined over C.

Theorem 1.19 (Habegger-Pila, Barroero-Dill). Let A be an abelian variety and C ⊆ A an

irreducible curve, both defined over C. If C is not contained in a proper algebraic subgroup of A,

then C ∩A[2] is a finite set.
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Previous partial results on the Zilber–Pink conjecture for curves defined over Q in

abelian varieties were obtained by various authors. Viada first proved finiteness in the

case where C is not contained in the translate of a proper abelian subvariety and the

abelian variety A is a power of an elliptic curve with complex multiplication [Via03].

This restriction on C was later removed in joint work with Rémond [RV03]. Ratazzi ex-

tended the result to the case where A is isogenous to a power of a simple abelian variety

with complex multiplication [Rat08]. Carrizosa’s lower bounds for the Néron–Tate height

[Car08, Car09], combined with Rémond’s upper bounds [Ré07], led to a proof of the con-

jecture for all abelian varieties with complex multiplication. Finally, the case of arbitrary

powers was treated by Galateau and Viada [Gal10, Via08].

While the case of curves is now well understood, the study of higher dimensional

subvarieties remains largely open. As for algebraic tori, the Zilber–Pink conjecture for hy-

persurfaces reduces to the Manin-Mumford conjecture (Theorem 1.3), proved for abelian

varieties by Raynaud [Ray83a]. Furthermore, significant progress has been made for

subvarieties of codimension 2, culminating in a recent result of Barroero and Dill, which

follows from Corollary 1.6 of [BD22].

Theorem 1.20 (Barroero-Dill). Let A/C be an abelian variety of dimension n and V ⊆ A an

irreducible subvariety of dimension n− 2, defined over C and not contained in any proper special

subvariety of A. Then, V ∩A[n−1] is not Zariski dense in V .

Partial results for codimension 2 subvarieties of abelian varieties defined over Q had

previously been proven by Checcoli, Veneziano and Viada [CVV14] for subvarieties in

powers of elliptic curves with complex multiplication; by Hubschmid and Viada [HV19]

in the non-CM case; and by Checcoli and Viada [CV14] for arbitrary products of CM

elliptic curves.

As in the toric case, several important partial results are known for general subvari-

eties of abelian varieties. First, the openness of the non-anomalous locus was established

by Rémond, who proved in [Ré09, Théorème 1.4] that V oa is Zariski open in V .

Next, Habegger proved the following bounded height theorem, which may be viewed

as the abelian analogue of Theorem 1.17.

Theorem 1.21 ([Hab09a]). Let A be an abelian variety and V ⊆ A an irreducible closed subva-

riety of dimension d, both defined over Q. Fix an ample symmetric line bundle on A and let ĥ be

the associated Néron–Tate height on A(Q). Then ĥ is bounded on

V oa ∩A[d].

This result was subsequently used to prove the following finiteness result, analogous

to Theorem 1.18, which constitutes an important partial case of the Zilber–Pink conjecture

for abelian varieties.
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Theorem 1.22 ([HP16, Theorem 9.15]). Let A be an abelian variety and V ⊆ A an irreducible

closed subvariety of dimension d, both defined over Q. Then the set

V oa ∩A[d+1]

is finite.

In particular, the same argument as in the toric case shows that the Zilber–Pink con-

jecture holds for any subvariety V ⊆ A such that V oa ̸= ∅.

We conclude by mentioning an extension of Theorem 1.19 to the semiabelian setting,

proved by Barroero, Kühne and Schmidt [BKS23], relying on the semiabelian Bounded

Height conjecture proved by Kühne in [Kü20].

Theorem 1.23 (Barroero-Kühne-Schmidt). Let G be a semiabelian variety and C ⊆ G be an

irreducible curve not contained in a proper algebraic subgroup of G, both defined over Q. Then

C ∩G[2] is a finite set.

This result extends to curves defined over C in semiabelian varieties defined over Q,

by Theorem 14.1 of [BD24].

Remark 1.24. It can be shown, using an argument due to Zilber, that Theorem 1.19 implies

Faltings’s theorem (formerly known as the Mordell Conjecture, see Introduction). For a

proof of this implication, see also [Cap23, Example 1.7].

1.3.1 Families of abelian varieties

So far, we have considered the case of fixed abelian varieties. However, all the conjectures

and results presented above have natural analogues in the context of families of abelian

varieties or, more formally, abelian schemes. This will be the setting of the problems

studied in Chapters 3 and 4. Again, we assume that all the varieties are defined over C,

unless otherwise stated.

Let S be a regular, irreducible, quasi-projective variety and π : A → S be an abelian

scheme of relative dimension g ≥ 1, i.e. a proper smooth group scheme such that for

every s ∈ S the fiber As := π−1(s) is an abelian variety of dimension g.

Example 1.25. An important example of abelian scheme which will be used throughout

Chapter 3 is the Legendre family of elliptic curves. Let S = Y (2) := P1 \ {0, 1,∞} and let

λ : EL → S be the scheme with fibers given by

Eλ : Y 2Z = X(X − Z)(X − λZ)

for each λ ∈ S. We will denote by EnL → Y (2) the n-fold fibered power EL×Y (2). . .×Y (2)EL.

Note that n sections P1, . . . , Pn : Y (2) → EL define a curve (P1, . . . , Pn)(Y (2)) ⊆ EnL which

dominates the base Y (2).
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Let π : A → S be an abelian scheme. A subgroup schemeG ⊆ A is a closed subvariety

which contains the image of G ×S G under the addition morphism and the image of the

zero section O : S → A, and is mapped to itself by the inversion morphism. A subgroup

scheme G ⊆ A is called flat if π|G is flat. If S is a curve, this is equivalent (see [Har77,

Proposition III.9.7]) to saying that every irreducible component of G dominates the base

S. Note that, if G is a flat subgroup scheme, then for every s ∈ S(C) the fiber Gs is an

algebraic subgroup of As. The dimension of this subgroup does not depend on s and it

is usually called the relative dimension of G.

Remark 1.26. It is worth noting that certain abelian schemes, such as those appearing as

universal families over Shimura varieties, can be realized as connected mixed Shimura

varieties. A general construction is given in [Pin05a, Construction 2.9], while [BD24, Sec-

tion 13] discusses the specific case of a fibered power of the Legendre family. In particular,

if S is a curve and A → S is the fibered power of a non-isotrivial elliptic scheme, then the

special subvarieties of A are precisely the irreducible components of the flat subgroup

schemes and the irreducible components of algebraic subgroups of the CM fibers; see

[Hab13a, p. 144].

Let A → S be an abelian scheme of relative dimension g ≥ 2, defined over C. For

each point s ∈ S(C), denote by As,tors the torsion subgroup of the fiber As, and define

Ators =
⋃

s∈S(C)
As,tors.

Observe that Ators coincides with the union of the kernels of the multiplication-by-N

maps on A, that is,

Ators =
⋃

N∈Z\{0}
ker[N ],

where [N ] : A → A denotes the multiplication-by-N morphism. Each torsion multisec-

tion ker[N ] has codimension g in A. Hence, for a subvariety V ⊆ A with dimV < g, we

expect the intersection V ∩ ker[N ] to be unlikely. This motivates the following result.

Theorem 1.27 (Relative Manin-Mumford conjecture). Let S be a regular, irreducible, quasi-

projective variety and π : A → S be an abelian scheme of relative dimension g ≥ 1, both defined

over C. Let also V ⊆ A be an irreducible subvariety such that
⋃
N∈Z[N ]V is Zariski dense in A.

If V (C) ∩ Ators is Zariski dense in V , then dimV ≥ g.

The Relative Manin–Mumford conjecture originated from ideas outlined by Zhang in

his ICM talk [Zha98b], and was later formulated explicitly by Pink in [Pin05b, Conjecture

6.2]. It was recently proven by Gao and Habegger [GH23].

Earlier progress toward the conjecture had been made through a series of works by

Masser and Zannier. They first established it for curves in abelian schemes of relative
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dimension 2, defined over C and isogenous to a product of elliptic schemes [MZ10, MZ12,

MZ14], and later for more general abelian schemes of relative dimension 2 over bases

defined over Q [MZ15]. In collaboration with Corvaja, they also handled the case of

relative dimension 2 over a base variety defined over C [CMZ18]. The case of curves

in arbitrary abelian schemes defined over Q was subsequently treated by Masser and

Zannier [MZ20], while the surface case was addressed by Habegger [Hab13b] and by

Corvaja, Tsimerman, and Zannier [CTZ23]. Finally, for general subvarieties of fibered

products of elliptic schemes, the conjecture was proved by Kühne [Kü23].

In the setting of families of abelian varieties, Pink also proposed another conjecture.

For an abelian scheme A → S, s ∈ S(C) and an integer n let

A[>n]
s =

⋃
codimH>n

H

where the union runs over all the algebraic subgroups H of the fiber As. Define also

A[>n] =
⋃

s∈S(C)
A[>n]
s .

Conjecture 1.28 ([Pin05b, Conjecture 6.1]). Let A → S be an abelian scheme defined over C
and V ⊆ A be an irreducible closed subvariety that is not contained in any proper closed subgroup

scheme of A, even after finite base changes. Then V ∩ A[>dimV ] is not Zariski dense in V .

Remark 1.29. Conjecture 1.28 was originally formulated in the broader context of families

of semiabelian varieties. However, this generalization was shown to be false by Bertrand

[Ber11], who constructed explicit counterexamples based on the existence of so-called Ri-

bet sections in certain semiabelian schemes. In subsequent work, Bertrand, Masser, Pillay,

and Zannier [BMPZ16] proved that, for one-dimensional families of semiabelian surfaces

of toric rank 1 defined over Q, Ribet sections are the only obstruction to the conjecture’s

validity. A complete and published account of Bertrand’s original counterexample has

recently been provided by Bertrand and Edixhoven [BE20].

Note that Conjecture 1.28 is weaker than Conjecture 1.5 for abelian schemes, as shown

in [Pin05b, Theorem 6.3]2. In the relative setting, partial results towards Conjecture 1.5

have been proved for curves in fibered powers of elliptic schemes.

Let S be a smooth, irreducible, quasi-projective curve and let E → S be an elliptic

scheme, both defined over Q. Assume that E is not isotrivial, i.e. it is not a constant

family even after a base change. For n ≥ 2, let π : En → S be the n-fold fibered power of

E . Given a curve C ⊆ En, each point c ∈ C(C) defines n points P1(c), . . . , Pn(c) on the

fiber Enπ(c).

2This result was originally stated for families of semiabelian varieties, but in this context it is incorrect, as
discussed earlier. However, the statement holds in the case of families of abelian varieties, as confirmed in
Remark 5.4(4) of [BE20].
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Theorem 1.30 (Barroero-Capuano [BC16]). Let C ⊆ En be an irreducible curve defined over

Q, not contained in a fixed fiber of En and such that the n points P1, . . . , Pn defined by it are

generically independent (i.e. no relation of the form
∑n
i=1 aiPi = O with ai ∈ Z not all zeroes

holds identically). Then there are at most finitely many c ∈ C(C) such that there exist vectors

(a1, . . . , an), (b1, . . . , bn) ∈ Zn that are linearly independent over Q and satisfying

a1P1(c) + . . .+ anPn(c) = b1P1(c) + . . .+ bnPn(c) = O.

This result can be equivalently reformulated by noting that, for fixed linearly inde-

pendent vectors (a1, . . . , an), (b1, . . . , bn) ∈ Zn, the set of points (P1, . . . , Pn) of En → S

satisfying

a1P1 + . . .+ anPn = b1P1 + . . .+ bnPn = O

defines a flat subgroup scheme of codimension 2 (see Lemma 2.2 of [BC16]). Conversely,

every flat subgroup scheme is contained in a subgroup scheme defined by linear equa-

tions with integer coefficients of the same dimension [Hab13a, Lemma 2.5]. Thus, The-

orem 1.30 is equivalent to stating that, if C is not contained in a proper flat subgroup

scheme or in a fixed fiber, then the intersection of C with the union of all flat subgroup

schemes of En of codimension at least 2 is finite.

Note also that for n = 2, the codimension 2 flat subgroup schemes are exactly the tor-

sion multisections, so Theorem 1.30 reduces to the Relative Manin-Mumford conjecture,

which was previously proved in this specific setting in the above-mentioned articles by

Masser and Zannier [MZ10, MZ12, MZ14].

Since the intersection of a flat subgroup scheme with a fiber yields an algebraic sub-

group of the same codimension in that fiber, Theorem 1.30 provides evidence towards

Conjecture 1.28. However, it does not fully establish the conjecture in this setting, as it

does not account for the algebraic subgroups of the fiber with non-trivial endomorphism

ring. The following result addresses this aspect.

Theorem 1.31 (Barroero [Bar19]). Let C ⊆ En be an irreducible curve defined over Q, not

contained in a fixed fiber of En and such that the n points P1, . . . , Pn defined by it are generi-

cally independent. Then there are at most finitely many c ∈ C(C) such that Eπ(c) has complex

multiplication and there exists (a1, . . . , an) ∈ End(Eπ(c))n \ {0} with

a1P1(c) + . . .+ anPn(c) = O.

As before, Theorem 1.31 is equivalent to say that if C is not contained in a proper

flat subgroup scheme or in a fixed fiber, then the intersection of C with the union of all

proper algebraic subgroups of the CM fibers of En is finite.

Note that the conclusion of Theorem 1.31 is stronger than that of Conjecture 1.28. The
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conjecture considers only algebraic subgroups of codimension at least 2 in each fiber,

whereas in the case where the fiber Es has complex multiplication, an algebraic subgroup

of codimension d in Ens corresponds to a special subvariety of codimension d+ 1 in En. In

particular, algebraic subgroups of codimension 1 in CM fibers are special subvarieties of

codimension 2 in En, which are not taken into account in Conjecture 1.28.

Observe also that, if C ⊆ En is contained in a fixed fiber or if E is isotrivial, then

the analogues of Theorems 1.30 and 1.31 reduce to the case of a curve in a fixed abelian

variety, which is already covered by Theorem 1.19. Therefore, by combining Theorems

1.19, 1.30, and 1.31, we obtain a proof of the Zilber–Pink conjecture for a curve in a fibered

power of an elliptic scheme, when everything is defined over Q.

A natural extension of these results concerns products of powers of elliptic schemes.

Let λ : Eλ → Y (2) and µ : Eµ → Y (2) be two copies of the Legendre scheme (we use sub-

scripts to avoid ambiguity when dealing with fibered powers) and, for positive integers

m,n, let Emλ × Enµ → Y (2) × Y (2) be the product of fibered powers of these schemes.

Consider an irreducible curve C ⊆ Emλ × Enµ defined over Q. As before, each point c ∈
C(C) defines m points P1(c), . . . , Pm(c) on Eλ(c) and n points Q1(c), . . . , Qn(c) on Eµ(c).

Assume that the Pi are generically independent over End(Eλ|C ) and the same holds for

the Qj , which is equivalent to requiring that C is not contained in a proper flat subgroup

scheme of Emλ × Enµ → Y (2) × Y (2). Suppose also that Eλ and Eµ are not generically

isogenous when restricted to C.

Theorem 1.32 (Barroero-Capuano [BC17]). Let C ⊆ Emλ × Enµ as above. Then, there are at

most finitely many c ∈ C(C) such that there exist vectors (a1, . . . , am) ∈ End(Eλ|C )m \{0} and

(b1, . . . , bn) ∈ End(Eµ|C )n \ {0} for which

a1P1(c) + . . .+ amPm(c) = Oλ and b1Q1(c) + . . .+ bnQn(c) = Oµ.

In combination with Theorems 1.19 and 1.30, this result implies that, in the product

of two fibered powers of elliptic schemes under the above hypotheses, the intersection of

a curve with the union of all flat subgroup schemes of codimension at least 2 is finite.

Together with Theorem 3.2, proved in Chapter 3, this addresses a large class of cases

predicted by the Zilber–Pink conjecture for curves in the product of two powers of the

Legendre family, with the exception of the case in which one factor has CM and there is

a linear relation on the other factor, which will be treated in future work.

Finally, for general abelian schemes, we have the following result.

Theorem 1.33 (Barroero-Capuano [BC20]). Let A → S be an abelian scheme over a smooth

irreducible curve S, and C an irreducible curve in A not contained in a proper subgroup scheme

of A, even after a finite base change. Suppose that A, S and C are all defined over Q. Then, the

intersection of C with the union of all flat subgroup schemes of A of codimension at least 2 is a
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finite set.

We will continue the study of the Zilber–Pink conjecture in the setting of abelian

schemes in Chapter 4, where we prove Theorem 4.1, a generalization of Theorem 1.31

to arbitrary abelian schemes.
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Chapter 2

Heights

One fundamental tool in Diophantine geometry is the concept of a height function, which

provides a measure of the “size” or “arithmetic complexity” of an algebraic point on a

variety. One of the key properties we are interested in is that there should be at most

finitely many points of bounded height and bounded degree.

We will construct height functions by first defining them on Q, then on projective

spaces, and finally on projective varieties. We will also consider the important case of

abelian varieties, where we can define a distinguished height function, called the Néron-

Tate or canonical height, which satisfies particularly nice properties. In Section 2.6, we

will establish a new explicit bound for the canonical height of the image of points under

endomorphisms of an abelian variety.

The main references for this chapter are [BG06] and [HS13, Part B].

2.1 Absolute values and the product formula

2.1.1 Absolute values on general fields

Definition 2.1. Let K be a field. An absolute value is a function |·| : K → R≥0 satisfying

the following three properties:

1. for all x ∈ K, |x| = 0 if and only if x = 0;

2. for all x, y ∈ K, |xy| = |x| |y|;

3. for all x, y ∈ K, |x+ y| ≤ |x| + |y|.

If in addition we have |x+ y| ≤ max(|x| , |y|) for all x, y ∈ K, we say that the abso-

lute value is nonarchimedean or ultrametric. Otherwise, the absolute value is said to be

archimedean.

Example 2.2. For any fieldK, we have a trivial (nonarchimedean) absolute value, defined

by |0| = 0 and |x| = 1 for any x ∈ K×.
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Another easy example is the usual absolute value on R, |x| = max(x,−x), also de-

noted as |x|∞, which is archimedean.

Definition 2.3. Two absolute values |·|1 and |·|2 on K are equivalent if there exists a con-

stant α > 0 such that |x|1 = |x|α2 for every x ∈ K. Alternatively, |·|1 and |·|2 are equivalent

if they define the same topology onK. An equivalence class of non-trivial absolute values

on K is called a place.

One way of constructing absolute values is using valuations.

Definition 2.4. A valuation is a function ν : K → R ∪ {∞} satisfying the following

properties:

1. for all x ∈ K, ν(x) = ∞ if and only if x = 0;

2. for all x, y ∈ K, ν(xy) = ν(x) + ν(y);

3. for all x, y ∈ K, ν(x+ y) ≥ min(ν(x), ν(y)).

If ν is a valuation on K, we can define an absolute value on K by choosing a ∈ R>1

and setting

|x|ν =

a
−ν(x) if x ̸= 0

0 if x = 0
.

In particular, this is a nonarchimedean absolute value and it is easy to see that its equiv-

alence class does not depend on a.

2.1.2 Absolute values on number fields

Let p be a prime. For any x ∈ Q×, there is a unique integer νp(x) such that

x = pνp(x) · a
b

with a and b integers not divisible by p. Extending νp to 0 by setting νp(0) = ∞ defines the

so-called p-adic valuation. We will call the associated absolute value on Q, |x|p = p−νp(x),

the p-adic absolute value. It is clear that the p-adic absolute values and the usual absolute

value are pairwise not equivalent and the following theorem (see [Cas86, Theorem 2.1]

for the proof) shows that these are essentially the only absolute values on Q.

Theorem 2.5 (Ostrowski, 1916). On Q any nontrivial absolute value is equivalent to either:

• The usual absolute value, |·|∞, or

• A p-adic absolute value, |·|p, for some prime p.
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For a field K and a place v, we denote by Kv the completion of K with respect to any

representative |·|v of v.

Proposition 2.6 (Product formula). Let K be a number field. It is possible to choose a set MK

consisting of exactly one representative for each place of K such that, for every x ∈ K×, we have

∑
v∈MK

|x|dv
v = 1

where dv = [Kv : Qv].

In the case K = Q, we can choose MQ to consist of the usual absolute value |·|∞ and

the p-adic absolute values for every prime p. In this case, the product formula follows

easily from the fundamental theorem of arithmetic.

For a general number field K, we can take MK as the set of absolute values on K

restricting to those in MQ on Q. However, these absolute values can also be explicitly

described, as we now explain.

We start by describing archimedean absolute values. For each embedding σ : K ↪→ C,

we define an archimedean absolute value by |x|σ = |σ(x)|∞, where |·|∞ denotes the usual

archimedean absolute value on C. Since |z|∞ = |z|∞ for every z ∈ C, it follows that

|·|σ = |·|τ whenever τ = σ.

In light of this, we list the n := [K : Q] embeddings K ↪→ C as

σ1, . . . , σr1 , σr1+1, . . . , σr1+r2 , σr1+1, . . . , σr1+r2 ,

where σ1, . . . , σr1 are the real embeddings and σr1+1, . . . , σr1+r2 are the complex ones, up

to conjugation.

Thus, we get r1 + r2 non-trivial archimedean absolute values on K, |·|σ1
, . . . , |·|σr1+r2

,

which are pairwise non-equivalent. One can also show that any non-trivial archimedean

absolute value on K is equivalent to one of these; see for example [Wal00, Section 3.1.3].

Moreover, if v is an archimedean place of the number field K, then Kv
∼= R if v corre-

sponds to a real embedding, andKv
∼= C otherwise. Since Qv

∼= R for every archimedean

place, we have

dv = [Kv : Qv] =

1 if v is real,

2 if v is complex.

Next, we describe the non-archimedean absolute values, which correspond to the non-

zero prime ideals of OK .

To define the analogue of the p-adic valuation on K, let p be a prime ideal of OK . The

p-adic valuation νp is defined as follows. For any non-zero x ∈ OK , νp(x) is the unique
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integer such that there exists an ideal I of OK satisfying

xOK = pνp(x) · I,

where p does not divide I. Equivalently, νp(x) is the exponent of p in the factorization of

xOK into prime ideals.

This definition extends to all of K by setting

νp

(
a

b

)
= νp(a) − νp(b)

for any a, b ∈ K×, and we set νp(0) = ∞ by definition.

Analogously to the definition of p-adic absolute values on Q, we use this valuation to

define the p-adic absolute value onK. For a prime ideal p ofK, let p be the prime number

such that p ∩ Z = pZ.

We then define

|x|p = p−νp(x)/e(p|p)

where e(p|p) = νp(p) is the ramification index of p over p. The factor e(p|p) ensures that

|p|p = p−1, so that |·|p extends |·|p. It can be verified that absolute values corresponding to

different prime ideals are non equivalent and that any non-trivial non-archimedean ab-

solute value on K is equivalent to one of these. Furthermore, if v is the non-archimedean

place of K associated with p, we have dv = e(p|p)f(p|p), where f(p|p) = [OK/p : Fp] is

the inertia degree of p. As before, we also have that dv = [Kv : Qv].
The following theorem generalizes Theorem 2.5 by showing that these are the only

non-trivial absolute values up to equivalence. For the proof we refer to Ostrowski’s orig-

inal articles [Ost16] and [Ost35], or [Con, Theorem 3.3].

Theorem 2.7 (Ostrowski). Every non-trivial absolute value on a number field K is equivalent

to one of the absolute values described above, namely, either a p-adic absolute value associated

with a unique non-zero prime ideal p of OK , or an Archimedean absolute value induced by a real

or complex embedding of K.

From now on, we will denote by MK the set of absolute values of K described above,

so that the product formula holds (see [HS13, Proposition B.1.2] for a proof). We will

write M∞
K for the set of archimedian (or infinite) places, and M0

K for the set of non-

archimedian (or finite) places.

2.2 The Weil height on Q

In light of our discussion on absolute values and the product formula, we now define the

Weil height on Q.

18



2.2. THE WEIL HEIGHT ON Q

Definition 2.8. Let α ∈ Q be an algebraic number. The absolute logarithmic Weil height of

α is defined by

h(α) = 1
[K : Q]

∑
v∈MK

dv log max{1, |α|v},

where K is any number field containing α. We also define the absolute multiplicative Weil

height of α as H(α) = exp(h(α)).

First, observe that the sum is always finite, since |α|v = 1 for all but finitely many

v ∈ MK . Notice also that h(α) does not depend on the choice of K.

Example 2.9. If α = a
b ∈ Q is a rational number, where a, b are coprime integers, then we

have ∏
p prime

max
{

1,
∣∣∣∣ab
∣∣∣∣
p

}
= |b|∞

and

max
{

1,
∣∣∣∣ab
∣∣∣∣
∞

}
=


∣∣a
b

∣∣
∞ if |a|∞ > |b|∞

1 otherwise

so that

h

(
a

b

)
= log(|b|∞) + log max

{
1,
∣∣∣∣ab
∣∣∣∣
∞

}
= log max {|a|∞ , |b|∞} .

We now present several properties of the Weil height.

Proposition 2.10. 1. For any α ∈ Q, h(α) ≥ 0. We have h(α) = 0 if and only if α = 0 or α

is a root of unity (Kronecker).

2. For any α, β ∈ Q, h(αβ) ≤ h(α) + h(β). Moreover, if β is a root of unity, then h(αβ) =
h(α).

3. For any α1, . . . , αn ∈ Q, we have h(α1 + . . .+ αn) ≤ h(α1) + . . .+ h(αn) + logn.

4. For any non-zero α ∈ Q and any n ∈ Z, h(αn) = |n| · h(α).

5. For any α ∈ Q and any σ ∈ Gal(Q/Q), h(σ(α)) = h(α).

Observe that it is not possible to replace logn in part 3 with any smaller constant, as

demonstrated by the example α1 = . . . = αn = 1. For the proofs of these properties see

Section 1.5 of [BG06].

Proposition 2.11 (Proposition 3.2 of [Zan14]). Let R(x) = P (x)
Q(x) ∈ Q(x) be a rational func-

tion, with P (x), Q(x) ∈ Q[x] coprime polynomials. Then, for every α ∈ Q such that Q(α) ̸= 0,

we have h(R(α)) = deg(R)h(α) + O(1), where deg(R) = max {deg(P ),deg(Q)} and the

bounded function O(1) depends only on R.
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The following finiteness theorem is one of the reasons why height functions are so

widely used in Diophantine geometry, serving as a foundational result for many finite-

ness results, such as those described in Chapters 3 and 4.

Theorem 2.12 (Northcott). Let B and D be real numbers. Then, the set

{
α ∈ Q : h(α) ≤ B and [Q(α) : Q] ≤ D

}
is finite.

Remark 2.13. Let α ∈ Q and let f(x) = adx
d + . . . + a1x + a0 ∈ Z[x] be its minimal

polynomial. Assume that gcd(ad, . . . , a0) = 1 and that ad ̸= 0. Denote by α1, . . . , αd ∈ C
the (distinct) complex roots of f . Then we can give an alternative definition of the Weil

height of α as follows:

h(α) = 1
d

log |ad| +
d∑
j=1

log max
{
1, |αj |∞

} .
This allows us to compute h(α) without computing the absolute values.

2.3 The Weil height on Pn(Q)

We now begin to extend the Weil height to a more geometric setting.

Definition 2.14. Let P = [x0 : . . . : xn] ∈ Pn(Q) and let K be a number field containing

x0, . . . , xn. The absolute logarithmic Weil height of P is defined as:

h(P ) = 1
[K : Q]

∑
v∈MK

dv log max{|x0|v , . . . , |xn|v}.

As before, we define the absolute multiplicative Weil height of P as H(P ) = exp(h(P )).

As for the Weil height on Q, this definition does not depend on the choice of K. Fur-

thermore, by the product formula, the height also does not depend on the choice of the

homogeneous coordinates of P , ensuring that it is well-defined. Moreover, it satisfies

h(σ(P )) = h(P ) for any σ ∈ Gal(Q/Q).

Remark 2.15. For n = 1, we recover the previous definition of the height on Q, since we

can embed Q into P1(Q) by α 7→ [1 : α].
More generally, we can embed Qn into Pn(Q) by

Qn −→ Pn(Q)

(α1, . . . , αn) 7−→ [1 : α1 : . . . : αn] .
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2.3. THE WEIL HEIGHT ON Pn(Q)

Thus, we can define the height of a point (α1, . . . , αn) ∈ Qn as

h((α1, . . . , αn)) = 1
[K : Q]

∑
v∈MK

dv log max{1, |α1|v , . . . , |αn|v},

where we can choose K = Q(a1, . . . , αn), as the definition does not depend on the choice

of K.

For a point P = [x0 : . . . : xn] ∈ Pn(Q), we define its field of definition as

Q(P ) = Q
(
x0
xj
, . . . ,

xn
xj

)

for any index j such that xj ̸= 0. In particular, up to permutations and normalization of

the coordinates, we may assume that x0 = 1. From this, it follows that h(P ) ≥ 0 and, if

x0 = 1, h(P ) ≥ h(xi) for every i = 1, . . . , n. Thus, Theorem 2.12 implies the following

generalization of Northcott’s theorem to Pn(Q).

Theorem 2.16. Let B and D be real numbers. Then, the set

{
P ∈ Pn(Q) : h(P ) ≤ B and [Q(P ) : Q] ≤ D

}
is finite.

In particular, this implies that for any fixed number field K, the set

{P ∈ Pn(K) : h(P ) ≤ T}

is finite for every T ≥ 0.

Finally, we generalize Kronecker’s theorem (part 1 of Proposition 2.10) to projective

spaces.

Theorem 2.17 (Kronecker). Let P ∈ Pn(Q), and assume that x0 = 1, as above. Then h(P ) = 0
if and only if, for every j = 1, . . . , n, xj = 0 or xj is a root of unity.

2.3.1 Heights of matrices

Let M = (mi,j) ∈ Matn(Q). We associate to M two natural heights:

• the affine height, defined by

Haff(M) =
∏

v∈MK

max
{

1, max
1≤i,j≤n

{
|mi,j |v

}} dv
[K:Q]

where K is a number field containing all the entries of M . This coincides with the

absolute multiplicative Weil height of M regarded as a point of Qn2
;
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• the entry-wise height, defined by

Hmax(M) = max
1≤i,j≤n

{H(mi,j)} .

The affine and entry-wise heights enjoy many useful properties with respect to usual

matrix operations, which we now collect.

Proposition 2.18. Let A,B ∈ Matn(Q). Then:

1. Hmax(A) ≤ Haff(A) ≤ Hmax(A)n2 ;

2. Hmax(A+B) ≤ 2Hmax(A)Hmax(B);

3. Hmax(AB) ≤ nHmax(A)nHmax(B)n;

4. H(det(A)) ≤ n! ·Haff(A)n;

5. if A is invertible, Hmax(A−1) ≤ n! · (n− 1)! ·Haff(A)2n−1.

Proof. Let A = (ai,j) and B = (bi,j) and fix a number field K containing all entries of A

and B.

1. Since max
{
1, |ai,j |v

}
≤ max

{
1, max

1≤i,j≤n

{
|ai,j |v

}}
, we clearly have

H(ai,j) =
∏

v∈MK

max
{
1, |ai,j |v

} dv
[K:Q] ≤ Haff(A)

which implies that Hmax(A) ≤ Haff(A). Moreover, recall that

max
{

1, max
1≤i,j≤n

{
|ai,j |v

}}
≤

∏
1≤i,j≤n

max
{
1, |ai,j |v

}

which implies that Haff(A) ≤
∏

1≤i,j≤nH(ai,j) ≤ Hmax(A)n2
.

2. The claim follows from the inequality

H(ai,j + bi,j) ≤ 2H(ai,j)H(bi,j) ≤ 2Hmax(A)Hmax(B),

which is a direct consequence of part (3) of Proposition 2.10.

3. Let AB = (ci,j), where ci,j =
n∑
k=1

ai,kbk,j . Then, applying Proposition 2.10 yields

H(ci,j) ≤ n ·
n∏
k=1

H(ai,k)H(bk,j) ≤ nHmax(A)nHmax(B)n

which implies Hmax(AB) ≤ nHmax(A)nHmax(B)n.
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2.3. THE WEIL HEIGHT ON Pn(Q)

4. Recall that

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

where Sn denotes the symmetric group on n elements and sgn(σ) ∈ {±1} is the sign

of the permutation σ. Hence det(A) is the sum of n! monomials of degree n in the

entries of A. In particular, for every place v ∈ MK , we have

|det(A)|v ≤


n! · max

1≤i,j≤n

{
|ai,j |v

}n if v is archimedean

max
1≤i,j≤n

{
|ai,j |v

}n if v is non-archimedean

Hence,

∏
v∈M0

K

max {1, |det(A)|v}
dv

[K:Q] ≤
∏

v∈M0
K

(
max

{
1, max

1≤i,j≤n

{
|ai,j |v

}}n) dv
[K:Q]

=

 ∏
v∈M0

K

max
{

1, max
1≤i,j≤n

{
|ai,j |v

}} dv
[K:Q]


n

and

∏
v∈M∞

K

max {1, |det(A)|v}
dv

[K:Q] ≤
∏

v∈M∞
K

(
n! max

{
1, max

1≤i,j≤n

{
|ai,j |v

}}n) dv
[K:Q]

= (n!)
1

[K:Q]
∑

v∈M∞
K

dv
 ∏
v∈M∞

K

max
{

1, max
1≤i,j≤n

{
|ai,j |v

}} dv
[K:Q]

n

= n!

 ∏
v∈M∞

K

max
{

1, max
1≤i,j≤n

{
|ai,j |v

}} dv
[K:Q]

n

since
∑
v∈M∞

K
dv = [K : Q]. So, we have

H(det(A)) =
∏

v∈MK

max {1, |det(A)|v}
dv

[K:Q]

=
∏

v∈M∞
K

max {1, |det(A)|v}
dv

[K:Q] ·
∏

v∈M0
K

max {1, |det(A)|v}
dv

[K:Q]

≤ n! ·Haff(A)n.

5. The case n = 1 is trivial, so assume n ≥ 2. Recall that A−1 = 1
det(A) · Ct, where C =(

(−1)i+jµi,j
)

is the cofactor matrix and µi,j is the (i, j)-minor1 of A. Then, by part

(4), H((−1)i+jµi,j) ≤ (n− 1)! ·Haff(A)n−1, so that Hmax(C) ≤ (n− 1)! ·Haff(A)n−1.

Therefore, Hmax(A−1) ≤ H(det(A)) ·Hmax(C) ≤ n! · (n− 1)! ·Haff(A)2n−1.
1Some authors use the word minor to denote just the matrix obtained from A by removing a row and a

column. In this case, by minor we mean the determinant of such a submatrix.
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2.4 The Weil height on Projective varieties

After studying the Weil height on Pn(Q), we now extend this notion to the Q-points of

arbitrary projective varieties. This extension is provided by the Weil height machine, which

associates height functions to divisors on projective varieties, allowing us to measure the

arithmetic complexity of points on more general varieties.

In general, if a projective variety V , defined over a number field, admits an embed-

ding into Pn, we can define the height of a point in V (Q) by viewing it as a point in

Pn(Q).

As a first example, we consider Pm × Pn. In this case, we have the Segre embedding

Sm,n : Pm × Pn ↪−→ PN

(x,y) 7−→ [x0y0 : x0y1 : . . . : xiyj : . . . : xmyn]

where N = (m+ 1)(n+ 1) − 1. This allows us to define hPm×Pn(x,y) := hPN (Sm,n(x,y)),

which satisfies the following property.

Proposition 2.19. For every x ∈ Pm(Q) and y ∈ Pn(Q), we have

h(Sm,n(x,y)) = h(x) + h(y).

More generally, to extend this approach to arbitrary projective varieties, we can use

any morphism into a projective space.

Definition 2.20. Let V be a projective variety defined over Q and let ϕ : V → Pn be a

morphism defined over Q. The height on V relative to ϕ is defined as

hϕ(P ) := h(ϕ(P )) for any P ∈ V (Q)

where h is the absolute logarithmic Weil height on Pn defined before.

Since height functions are defined via morphisms into projective space, one may

worry about their dependence on the choice of such morphisms. The next proposition en-

sures that if two morphisms come from the same complete linear system, the associated

height functions differ by a bounded function.

Proposition 2.21. Let V be a projective variety defined over Q. Let H ⊆ Pn and H ′ ⊆ Pm be

hyperplanes. Let ϕ : V → Pn and ψ : V → Pm be morphisms such that ϕ∗H and ψ∗H ′ are

linearly equivalent. Then we have

hϕ(P ) = hψ(P ) +O(1)

for every P ∈ V (Q). The bounded function O(1) depends on V, ϕ and ψ but not on P .
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While the height functions we introduced depend on a choice of morphism into pro-

jective space, a more intrinsic approach exists. Instead of relying on embeddings, one can

define heights directly in terms of divisors on the variety. This construction, due to Weil,

is also known as Weil’s height machine and it allows us to translate geometric relations into

arithmetical statements about heights.

Theorem 2.22 (Weil’s height machine). Let V be a smooth projective variety defined over Q.

Then, there exists a map

Div(V ) −→ {functions V (Q) → R}

D 7−→ hV,D

which is, up to a bounded function O(1), uniquely defined by the following three properties:

1. (Normalization) Let H ⊆ Pn be an hyperplane. Then, for every P ∈ Pn(Q), we have

hPn,H(P ) = h(P ) +O(1),

where h is the absolute logarithmic height on Pn(Q).

2. (Functoriality) Let ϕ : V → W be a morphism and let D ∈ Div(W ) be a divisor. Then, for

every P ∈ V (Q), we have

hV,ϕ∗D(P ) = hW,D(ϕ(P )) +O(1).

3. (Additivity) Let D,D′ ∈ Div(V ). Then, for every P ∈ V (Q), we have

hV,D+D′(P ) = hV,D(P ) + hV,D′(P ) +O(1).

Moreover, it satisfies the following additional properties:

4. (Linear equivalence) If D,D′ ∈ Div(V ) are two linearly equivalent divisors, then

hV,D(P ) = hV,D′(P ) +O(1)

for every P ∈ V (Q).

5. (Positivity) Let D ∈ Div(V ) be an effective divisor, and let B be the set of base points

of the associated linear system |D|. Then, there is a constant γ ∈ R such that, for every

P ∈ (V \B)(Q), we have

hV,D(P ) ≥ γ.

6. (Northcott) Let D ∈ Div(V ) be an ample divisor. Then, for any constants B,C ∈ R the set

{P ∈ V (Q) : [Q(P ) : Q] ≤ B and hV,D(P ) ≤ C}
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is finite.

The bounded functions O(1) and the constant in property 5, depend on the varieties, divisors and

morphisms, but not on the points on the variety.

The main idea behind this construction is to first define hV,D whenD is very ample (or

even base point free). If D is very ample, then the map associated to its complete linear

system ϕ|D| : V → Pn is an embedding such that ϕ∗
|D|H is linearly equivalent to D for

every hyperplane H ⊆ Pn. Then, we define hV,D = h◦ϕ|D|. Proposition 2.21 implies that,

up to a bounded function, this definition does not depend on the chosen embedding. In

particular, if H ⊆ Pn is an hyperplane, the corresponding embedding ϕ|H| : Pn → Pn is

the identity, so property 1 follows easily.

For a general divisorD ∈ Div(V ), it is known (see [HS13, Theorem A.3.2.3]) that there

are two very ample divisors D1, D2 ∈ Div(V ), such that D = D1 −D2. Thus, we define

hV,D(P ) = hV,D1(P ) − hV,D2(P )

for every P ∈ V (Q).

For the proof of Theorem 2.22, we refer to the proof of Theorem B.3.2 of [HS13].

Remark 2.23. If the variety V is not smooth, we can use either Cartier divisors or line

bundles instead of Weil divisors. See for example Theorem B.3.6 of [HS13].

Example 2.24. Let C be a smooth projective curve of genus 0 defined over a number field

k. Then, the anticanonical divisor −KC (which we assume defined over k, too) is very

ample and the image of C by the associated embedding is a conic in P2 defined over k.

In particular, the height hC,−KC
corresponds to the restriction of the usual height on P2

to the image of this embedding.

Let C be a smooth projective curve of genus 1 defined over a number field k and let

O ∈ C(k). Then, the divisor 3O is very ample and the associated embedding (defined

over k) is

ϕ|3O| : C ↪−→ P2

P ̸= O 7−→ [x(P ) : y(P ) : 1]

O 7−→ [0 : 1 : 0]

where x, y ∈ k(C) are two functions satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some constants a1, a2, a3, a4, a6 ∈ k. In other words, C is isomorphic to the elliptic

curve E in P2 defined by the equation above and with identity element [0 : 1 : 0]. Thus,

the height on C associated to 3O is just the logarithmic height on P2 restricted to E.
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2.5 Canonical height functions

The height functions obtained from Theorem 2.22 are well-defined only up to an additive

bounded term. In this section, we introduce a refinement that selects a distinguished rep-

resentative within this equivalence class, known as the canonical height. In particular, we

will consider the special case of abelian varieties, in which the canonical heights satisfy

additional properties related to the group structure.

Theorem 2.25 (Néron, Tate). Let V be a smooth projective variety defined over a number field

and D ∈ Div(V ). Let ϕ : V → V be a morphism such that ϕ∗D ∼ αD for some α > 1. Then

there exists a unique function ĥV,ϕ,D : V (Q) → R, which we call the canonical height on V

with respect to ϕ and D, such that

i) ĥV,ϕ,D(P ) = hV,D(P ) +O(1) for every P ∈ V (Q).

ii) ĥV,ϕ,D(ϕ(P )) = α · ĥV,ϕ,D(P ) for every P ∈ V (Q).

iii) If D′ ∈ Div(V ) is linearly equivalent to D, then ĥV,ϕ,D = ĥV,ϕ,D′ .

Moreover, ĥV,ϕ,D can be computed as follows:

ĥV,ϕ,D(P ) = lim
n→∞

1
αn
hV,D(ϕn(P ))

where ϕn = ϕ ◦ . . . ◦ ϕ is the n-th iterate of ϕ.

To illustrate the construction of canonical heights, we consider the special case of

projective spaces.

Example 2.26. Let d ≥ 2 and consider the morphism

πd : Pn −→ Pn

[x0 : . . . : xn] 7−→
[
xd0 : . . . : xdn

]
.

If H ⊂ Pn is any hyperplane, then π∗
dH ∼ dH . Thus, we can define a canonical height

ĥPn,πd,H . Since hPn,H(P ) = h(P ) + O(1) and h(πd(P )) = dh(P ) for every P ∈ Pn(Q), we

have

ĥPn,πd,H(P ) = lim
N→∞

1
dN

hPn,H(πNd (P )) = lim
N→∞

1
dN

(
dNh(P ) +O(1)

)
= h(P ).

Thus, in this case, the canonical height coincides with the absolute logarithmic Weil

height on Pn.

Proposition 2.27. Let V be a smooth projective variety defined over a number field and D ∈
Div(V ) be an ample divisor. Let ϕ : V → V be a morphism such that ϕ∗D ∼ αD for some
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α > 1 and let ĥV,ϕ,D be the associated canonical height defined in the theorem above. Then

ĥV,ϕ,D(P ) ≥ 0 for every P ∈ V (Q) and ĥV,ϕ,D(P ) = 0 if and only if the set

{
P, ϕ(P ), ϕ2(P ), . . . , ϕn(P ), . . .

}
is finite.

2.5.1 Preliminaries on abelian varieties

In this section, we collect the foundational definitions and results concerning abelian

varieties that will serve as a basis for our development of canonical heights and for the

rest of the thesis. It is not intended as a comprehensive treatment of abelian varieties, for

which we refer the reader to [BL04, Mil08, Mum08].

Recall that an abelian variety is a projective, connected and geometrically reduced

group variety, i.e. a projective, connected and geometrically reduced variety A with a

base point O ∈ A and morphisms

µ : A×A → A

ι : A → A

which endow A with the structure of a group. In other words, these maps satisfy the

following identities for all P,Q,R ∈ A:

µ(P,O) = µ(O,P ) = P

µ(P, ι(P )) = µ(ι(P ), P ) = O

µ(µ(P,Q), R) = µ(P, µ(Q,R))

We say that the abelian variety is defined over K if the variety A, along with the

morphisms µ and ι, is defined over K and O ∈ A(K). It is a classical fact that abelian

varieties are smooth, and moreover, the group law on A is commutative. Therefore, we

write µ(P,Q) = P +Q and ι(P ) = −P .

For any integer n, let [n]A : A → A be the multiplication-by-n map. When no ambi-

guity arises, we will write [n] instead of [n]A.

Proposition 2.28 (Mumford’s formula). Let A be an abelian variety, D ∈ Div(A) and n ∈ Z.

Then

[n]∗D ∼ n2 + n

2 D + n2 − n

2 [−1]∗D.

In particular, if D is symmetric, i.e. [−1]∗D ∼ D, then [n]∗D ∼ n2D. On the other hand, if D

is antisymmetric, i.e. [−1]∗D ∼ −D, then [n]∗D ∼ nD.
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In this thesis we will be mainly working with abelian varieties defined over C, which

we will identify with their set of complex points. It is well-known that if A is an abelian

variety of dimension g defined over C, then A(C) is a complex torus, i.e. A(C) ∼= V/Λ for

some g-dimensional C-vector space V and some lattice Λ ⊆ V . After fixing bases of V

and Λ, we have that Λ = ΠZ2g, for some matrix Π ∈ Matg×2g(C) called period matrix.

Let A,B be two abelian varieties. A homomorphism is a morphism f : A → B of group

varieties (in other words, it is a morphism of algebraic varieties which is also a group

homomorphism). WhenB = A such a map is called an endomorphism. A homomorphism

f : A → B is called an isogeny if it is surjective and it has finite kernel.

We denote by Hom(A,B) the set of homomorphisms from A to B and we define

End(A) := Hom(A,A) to be the set of all endomorphisms. Moreover, we define

Hom0(A,B) := Hom(A,B) ⊗ Q End0(A) := End(A) ⊗ Q.

Note that Hom(A,B) is an abelian group under point-wise addition and, similarly, End(A)
is a ring where the multiplication is given by composition of maps. We will always as-

sume that all the morphisms are defined over an algebraic closure of the ground field.

Given an endomorphism f of A = V/Λ, by Proposition 1.2.1 of [BL04], there is a

unique linear map F : V → V with F (Λ) ⊆ Λ and inducing f on A. The restriction FΛ of

F to Λ is Z-linear and completely determines both F and f .

Fix bases of V and Λ, and let Π be the corresponding period matrix, i.e. the matrix

representing the basis of Λ in terms of the basis of V . With respect to these bases, F and

FΛ are given by matrices ρa(f) ∈ Matg(C) and ρr(f) ∈ Mat2g(Z), respectively. Since

F (Λ) ⊆ Λ, we must have

ρa(f) · Π = Π · ρr(f). (2.1)

The associations F 7→ ρa(f) and FΛ 7→ ρr(f) extend to injective ring homomorphisms

ρa : End0(A) −→ Matg(C)

ρr : End0(A) −→ Mat2g(Q)

called the analytic representation and the rational representation of End0(A), respec-

tively.

We denote by Â = Pic0(A) the dual abelian variety, i.e. the group of line bundles on

A that are algebraically equivalent to zero. Given a point x ∈ A, we denote by Tx the

translation-by-x map. If L is an arbitrary line bundle on A, we have a homomorphism

ΦL : A −→ Â

x 7−→ T ∗
xL⊗ L−1

(2.2)
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and we call K(L) its kernel. A polarization is an isogeny A → Â of the form ΦL for some

ample line bundle L. We say that a polarization is principal if it is an isomorphism (i.e.

deg ΦL = 1). Recall that any two algebraically equivalent ample line bundles on A define

the same polarization.

We denote by χ(L) the Euler characteristic of L.

To any polarization ΦL on A corresponds a positive definite Hermitian form HL =
c1(L) : V × V → C, given by the first Chern class of the line bundle L. It is worth noting

that in the literature, the term polarization may refer either to the ample line bundle

L (up to algebraic equivalence), the associated isogeny ΦL, or the Hermitian form HL.

These notions are equivalent; see, for example, Section 4.1 of [BL04]. We denote by EL =
Im(HL) the alternating Riemann form associated with L, which takes integer values on

the lattice Λ.

Given an ample line bundle L on A, there exists a basis of Λ, called symplectic basis,

such that the alternating Riemann form EL : Λ × Λ → Z is represented by the matrix

 0 D
−D 0


where D := diag(d1, . . . , dg) is a diagonal matrix, with d1, . . . , dg positive integers such

that di divides di+1 for each i = 1, . . . , g− 1. We call D the type of the polarization ΦL and

we define the Pfaffian of EL as Pf(EL) = det(D) [BL04, Section 3.2]. The degree of the

isogeny ΦL is called the degree of the polarization and it is easy to prove that it is equal to

Pf(EL)2 = det(EL).

Next, we define the Rosati (anti-)involution on End0(A) with respect to the polariza-

tion ΦL as:
† : End0(A) −→ End0(A)

f 7−→ f † = Φ−1
L ◦ f̂ ◦ ΦL

(2.3)

where f̂ ∈ End0(Â) denotes the dual of f and, with a slight abuse of notation, we also

denote by ΦL the corresponding element of Hom0(A, Â). This map is Q-linear and satis-

fies (fg)† = g†f † for all f, g ∈ End0(A). In particular, if ΦL is a principal polarization, the

Rosati involution restricts to an involution on End(A).

2.5.2 Canonical heights on abelian varieties

Having introduced the general theory, we now explore canonical heights in the context

of abelian varieties. In this setting, the group structure imposes additional constraints on

height functions, leading to stronger arithmetic properties. In particular, by Proposition

2.28, Theorem 2.25 implies that we can construct a canonical height associated with ei-

ther a symmetric or an antisymmetric divisor. We will first consider the symmetric case,
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which is the primary focus of the next section as well as Chapters 3 and 4.

Theorem 2.29. Let A be an abelian variety defined over a number field, and let D be a symmetric

divisor on A. Then there is a unique function ĥA,D : A(Q) → R, called canonical height on A

relative to D, satisfying the following properties:

i) ĥA,D(P ) = hA,D(P ) +O(1) for every P ∈ A(Q).

ii) For every n ∈ Z, ĥA,D([n]P ) = n2 · ĥA,D(P ) for every P ∈ A(Q).

iii) If D′ ∈ Div(A) is symmetric, then ĥA,D+D′ = ĥA,D + ĥA,D′ .

iv) If D′ ∈ Div(A) is linearly equivalent to D, then ĥA,D = ĥA,D′ .

v) (Parallelogram Law) ĥA,D(P + Q) + ĥA,D(P − Q) = 2ĥA,D(P ) + 2ĥA,D(Q), for all

P,Q ∈ A(Q).

Classically, ĥA,D is defined as the canonical height on A with respect to [2] : A → A,

using Theorem 2.25:

ĥA,D(P ) = lim
n→∞

1
4nhA,D([2n]P ).

However, one can show that replacing 2 with any integer m ̸= −1, 0, 1 yields the same

canonical height on A.

Remark 2.30. If D is an ample and symmetric divisor on A, then Proposition 2.27 implies

that ĥA,D(P ) ≥ 0 for every P ∈ A(Q). Moreover, ĥA,D(P ) = 0 if and only if the set

{P, [2]P, [4]P, . . . , [2n]P, . . .}

is finite. This finiteness condition is in turn equivalent to the existence of integers 0 ≤
i < j such that [2i]P = [2j ]P , which is equivalent to P having finite order, i.e. , P being a

torsion point.

Furthermore, if D is a symmetric and nef divisor on A, then for any ample and sym-

metric divisor H and any n > 0, the divisor nD +H is ample and symmetric, as follows

from Kleiman’s criterion, and we have

nĥA,D = ĥA,nD+H − ĥA,H ≥ −ĥA,H .

Since H is ample, we have ĥA,H ≥ 0, and as n > 0 is arbitrary, it follows that ĥA,D ≥ 0 as

well. However, as shown in [KS16], when D is nef and symmetric, the set

{
P ∈ A(Q) : ĥA,D = 0

}
may contain more than just the torsion points.
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We can now state an analogous theorem for antisymmetric divisors.

Theorem 2.31. Let A be an abelian variety defined over a number field, and let D be an antisym-

metric divisor on A. Then there is a unique canonical height function ĥA,D : A(Q) → R, such

that:

i) ĥA,D(P ) = hA,D(P ) +O(1) for every P ∈ A(Q).

ii) If D′ ∈ Div(A) is antisymmetric, then ĥA,D+D′ = ĥA,D + ĥA,D′ .

iii) If D′ ∈ Div(A) is linearly equivalent to D, then ĥA,D = ĥA,D′ .

iv) For all P,Q ∈ A(Q),

ĥA,D(P +Q) = ĥA,D(P ) + ĥA,D(Q).

In particular, ĥA,D([n]P ) = n · ĥA,D(P ) for every P ∈ A(Q) and any n ∈ Z.

Similar to the symmetric case, the assumption that D is antisymmetric implies that

[2]∗D ∼ 2D. Thus, we can apply Theorem 2.25 to define the canonical height ĥA,D as:

ĥA,D(P ) = lim
n→∞

1
2nhA,D([2n]P ).

Now, we combine Theorems 2.29 and 2.31 to extend the definition of canonical heights

to arbitrary divisors.

Theorem 2.32. Let A be an abelian variety defined over a number field, and let D be a divisor

on A. Then, there is a unique function ĥA,D : A(Q) → R such that ĥA,D = hA,D + O(1) and

ĥA,D(O) = 0, called canonical height on A relative to D, satisfying the following properties:

i) If D′ ∈ Div(A) is linearly equivalent to D, then ĥA,D = ĥA,D′ .

ii) If D,D′ ∈ Div(A), then ĥA,D+D′ = ĥA,D + ĥA,D′ .

iii) Let B be another abelian variety (also defined over a number field), and let ϕ : B → A be a

morphism. Then

ĥB,ϕ∗D = ĥA,D ◦ ϕ− ĥA,D(ϕ(OB)).

In particular, if ϕ is a homomorphism, ĥB,ϕ∗D = ĥA,D ◦ ϕ.

Given a divisor D on A, the key idea in constructing the associated canonical height

is to define the divisors D+ = D+ [−1]∗D and D− = D− [−1]∗D. Then, D+ is symmetric

and D− is antisymmetric, so we can define ĥA,D+ and ĥA,D− using the theorems above.

Hence, since D+ +D− = 2D, we can define

ĥA,D =
ĥA,D+ + ĥA,D−

2 .
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2.6 Canonical height bounds for endomorphisms of abelian va-

rieties

Let A be an abelian variety of dimension g defined over Q, and let D be a symmetric

divisor on A. Since D is symmetric, Theorem 2.29 states that

ĥA,D([n]P ) = n2 · ĥA,D(P )

for any P ∈ A(Q) and for every n ∈ Z. The aim of this section is to generalize this identity

to arbitrary endomorphisms of A.

It was noted by Naumann [Nau04] that, if End0(A) is Q, an imaginary quadratic field

or a definite quaternion algebra over Q, and if D is an ample symmetric divisor, then

ĥA,D(f(P )) = (deg f)1/g · ĥA,D(P )

for any f ∈ End(A) and any P ∈ A(Q), recovering a well known fact for elliptic curves.

In general, however, we cannot expect an identity of this form, as illustrated by the

following example. Consider A = E × E, where E is any elliptic curve with identity

element O, and let D = (O × E) + (E ×O). Define the endomorphism f : A → A by

f(P1, P2) = (P1, 2P2).

Since we can write D = π∗
1(O) + π∗

2(O), where π1 and π2 are the projections onto the two

factors, we obtain

ĥA,D(P1, P2) = ĥE,O(π1(P1, P2)) + ĥE,O(π2(P1, P2)) = ĥE,O(P1) + ĥE,O(P2)

by Theorem 2.32. Choosing either P1 = O or P2 = O, we conclude that there is no

constant γ such that

ĥA,D(f(P )) = ĥE,O(P1) + 4ĥE,O(P2) = γ ·
(
ĥE,O(P1) + ĥE,O(P2)

)
= γ · ĥA,D(P )

for every P = (P1, P2) ∈ A(Q). Nonetheless, since the divisor O is ample, it follows that

ĥA,D(P ) ≤ ĥA,D(f(P )) ≤ 4ĥA,D(P ).

More generally, if D is ample and symmetric, there exist constants 0 ≤ γ1 ≤ γ2 such

that

γ1 · ĥA,D(P ) ≤ ĥA,D(f(P )) ≤ γ2 · ĥA,D(P ).

In particular, γ1 must be taken equal to 0 if f is not an isogeny, while it can be chosen
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strictly positive if f is an isogeny.

To prove the upper bound, recall that since D is ample, there exists an integer N2

such that nD−f∗D is ample for all n ≥ N2, see for instance [Laz04, Example 1.2.10]. This

implies

N2 · ĥA,D(P ) − ĥA,D(f(P )) = ĥA,N2D−f∗D(P ) ≥ 0

giving the upper bound with γ2 = N2.

For the lower bound, first observe that if f is not finite, then the dimension of ker(f)
is positive and, in particular, there is a non-torsion point P ∈ A(Q) for which f(P ) = O.

Therefore, we must have γ1 = 0 in this case. On the other hand, if f is finite then f∗D is

ample. Thus, as before, there exists an integer N1 > 0 such that nf∗D − D is ample for

any n ≥ N1. This means that

N1 · ĥA,D(f(P )) − ĥA,D(P ) = ĥA,N1f∗D−D(P ) ≥ 0

from which we deduce the lower bound, with γ1 = 1
N1

> 0.

If f is an isogeny, the existence of these bounds also follows from Theorem B in

[Lee16].

Unfortunately, this method does not provide effective values for γ1 and γ2, although

explicit computations may be possible for specific choices of D and f .

The main result of this section is the following theorem, which gives explicit values

for γ1 and γ2 in terms of the eigenvalues of the analytic representation of f †f , where † is

the Rosati involution defined by the polarization associated to D. Define

α−
D(f) = min {α1, . . . , αg} and α+

D(f) = max {α1, . . . , αg} ,

where α1, . . . , αg are the eigenvalues (counted with multiplicities) of ρa(f †f). We will

prove in Lemma 2.34 that these eigenvalues are real and non-negative.

Theorem 2.33. Let A be an abelian variety defined over Q, and let D be an ample symmetric

divisor on A. Then, for every endomorphism f : A → A, we have

α−
D(f) · ĥA,D(P ) ≤ ĥA,D(f(P )) ≤ α+

D(f) · ĥA,D(P )

for every P ∈ A(Q). Moreover, these constants are the best possible, meaning that we cannot

replace α+
D(f) and α−

D(f) with a smaller and a larger constant, respectively.

We will prove this theorem in Section 2.6.2.
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2.6.1 Properties of endomorphisms and line bundles of abelian varieties

Fix an ample divisor D on A = Cg/Λ and let L = OA(D) be the associated line bun-

dle. In the following, † denotes the Rosati involution induced by the polarization ΦL

corresponding to L.

We start with a classical result about the eigenvalues of ρa(f †f). The following proof

is inspired by an argument by Masser and Wüstholz [MW94] (used also in Section 4.4).

Lemma 2.34. Let f ∈ End0(A). Then all the eigenvalues of ρa(f †f) are real and non-negative.

If f ̸= 0, then at least one eigenvalue is positive.

Proof. By Proposition 5.1.1 of [BL04], we have that HL(ρa(f)v, w) = HL(v, ρa(f †)w), for

every v, w ∈ Cg, where HL : Cg × Cg → C is the Hermitian form associated with the

ample line bundle L. Thus, if HL is the matrix representing HL, we have

ρa(f †) = H−1
L ρa(f)tHL

where M t is the conjugate transpose of the matrix M .

Since L is ample, HL is positive definite, and therefore there is an invertible matrix S

such that HL = S
t
S. Thus, we have

ρa(f †f) = H−1
L · ρa(f)t · HL · ρa (f) = S−1(St)−1ρa(f)tStSρa(f).

By setting X = S · ρa(f) · S−1, we have that

ρa(f †f) = S−1(St)−1 · ρa(f)t · StS · ρa(f) · S−1S = S−1X
t
XS

proving that ρa(f †f) has non-negative real eigenvalues, since Xt
X is a positive semidef-

inite matrix and eigenvalues are invariant under change of basis. In particular, as Hermi-

tian matrices are diagonalizable, this also implies that Xt
X cannot have all zero eigen-

values unless it is the zero matrix. However, if X has entries xi,j ∈ C and X
t
X = 0,

then 0 = tr(Xt
X) =

∑g
i,j=1 |xi,j |2, which implies that X = S · ρa(f) · S−1 = 0 and thus

ρa(f) = 0.

Notice that for f ∈ End(A), the matrix ρa(f †f) has only positive eigenvalues if and

only if X is invertible, which is the case precisely when ρa(f) is invertible, i.e. when f is

an isogeny.

Denote by P a
f†f (x) and P r

f†f (x) the characteristic polynomial of f †f with respect to

the analytic and the rational representations, respectively. Using [BL04, Proposition 5.1.2]

and the previous lemma, P a
f†f and P r

f†f are real polynomials and we have

P rf†f (x) =
(
P af†f (x)

)2
. (2.4)
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With these notations, we have the following generalization of Lemma 2.1 of [Lan88] (see

also [BL04, Proposition 5.1.6]).

Lemma 2.35. Let L be an ample line bundle, f ∈ End(A) and a, b ∈ Z, with b > 0. Then,

χ(f∗L−b ⊗ La) = χ(L) · bg · P af†f

(
a

b

)
.

Proof. Fix b > 0 an integer. By Corollary 3.6.2 of [BL04], we have

χ(f∗L−b ⊗ La)2 = deg(Φf∗L−b⊗La)

where the map ΦL was defined in (2.2). By [BL04, Corollary 2.4.6] we have

Φf∗L−b⊗La = −[b]Φf∗L + [a]ΦL and Φf∗L = f̂ΦLf = ΦLf
†f.

Then, recalling that for every φ ∈ End(A), deg(φ) = det(ρr(φ)) [BL04, eq. (1.2)], we get

χ(f∗L−b ⊗ La)2 = deg
(
−[b]ΦLf

†f + [a]ΦL

)
= deg ΦL · deg

(
−[b]f †f + [a]

)
= deg ΦL · det

(
ρr
(
−[b] · f †f + [a]

))
= deg ΦL · det

(
−b · ρr(f †f) + a · 12g

)
= deg ΦL · b2g · det

(
−ρr(f †f) + a

b
· 12g

)
= χ(L)2 · b2g · P rf†f

(
a

b

)
= χ(L)2 · b2g ·

(
P af†f

(
a

b

))2

by Equation (2.4). Here 12g is the 2g × 2g identity matrix. It follows that

χ(f∗L−b ⊗ La) = ±χ(L) · bg · P af†f

(
a

b

)
.

Fix b > 0 arbitrary. SinceL is ample, we have χ(L) > 0. Moreover, for all sufficiently large

a > 0, the divisor f∗L−b ⊗La is ample by Kleinman’s criterion, hence χ(f∗L−b ⊗La) > 0.

Finally, since P a
f†f is a monic polynomial (see [BL04, after proof of Proposition 5.1.2]),

P a
f†f

(
a
b

)
is also positive for all sufficiently large a > 0, completing the proof.

For the reader’s convenience, we also recall the following theorem, which combines

results by Kempf [Kem, Theorem 2] and by Mumford [Mum08, Section 16]. Here, given

a line bundle M on A, we denote by H i(A,M) the i-th cohomology group of M . Recall

also that we denote by K(M) the kernel of the homomorphism ΦM : A → Â.

Theorem 2.36. Let M and M ′ be line bundles on an abelian variety A of dimension g, with M
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ample. Consider the polynomial PM,M ′(x) ∈ Q[x] (of degree g) such that

PM,M ′(n) = χ(Mn ⊗M ′)

for every n ∈ Z. Then:

(i) All roots of PM,M ′ are real and dimK(M ′) is equal to the multiplicity of 0 as a root,

(ii) (Mumford’s vanishing theorem) If K(M ′) is finite, there is a unique integer i = i(M ′),

with 0 ≤ i(M ′) ≤ g, such that Hk(A,M ′) = 0 for k ̸= i and H i(A,M ′) ̸= 0. Moreover,

K(M ′−1) is finite2 and i(M ′−1) = g − i(M ′).

(iii) Counting roots with multiplicities, assume that PM,M ′ has N− negative roots and N+

positive roots, then:

Hk(A,M ′) = 0, if 0 ≤ k < N+

Hg−k(A,M ′) = 0, if 0 ≤ k < N−.

Finally, we have the following characterization of ample line bundles.

Proposition 2.37. [BL04, Proposition 4.5.2] A line bundleM onA is ample if and only ifK(M)
is finite and H0(A,M) ̸= 0.

2.6.2 Proof of Theorem 2.33

Given an abelian variety A of dimension g defined over a number field, an ample sym-

metric divisor D and f ∈ End(A), let α1, . . . , αg be the eigenvalues (counted with multi-

plicities) of ρa(f †f), where the Rosati involution is defined with respect to the polariza-

tion L = OA(D).

Define α−
D(f) = min {α1, . . . , αg} and α+

D(f) = max {α1, . . . , αg}, as before. Notice

that, by Lemma 2.34, α−
D(f) is non-negative and it is positive if and only if f is surjective,

which is compatible with what we said in the introduction. Moreover, α+
D(f) > 0 for

every f ̸= 0.

Proof of Theorem 2.33. The claim is trivially true for f = 0, so we will assume that f ̸= 0
for the rest of the proof. Let λ = a

b be a rational number, with b > 0, and let L be the

line bundle associated to D. As above, consider L as a polarization on A and define the

Rosati involution with respect to this line bundle.

2This follows from [BL04, Lemma 2.4.7 (c)].

37



2. HEIGHTS

We start by proving the upper bound. Consider the line bundle M = f∗L−b ⊗ La.

Then, for every n ∈ Z,

PL,M (n) = χ(Ln ⊗M) = χ(f∗L−b ⊗ Ln+a) = χ(L) · bg · P af†f

(
n+ a

b

)
by Lemma 2.35. Thus, we have

PL,M (x) = χ(L) · bg · P af†f

(
x+ a

b

)
= χ(L) · bg ·

g∏
i=1

(
x+ a

b
− αi

)

= χ(L) ·
g∏
i=1

(x− (bαi − a)) .

Combining Proposition 2.37 and Theorem 2.36, we obtain that M is ample if and only

if all the roots of PL,M are negative, which is equivalent to say that a
b > αi for every

i = 1, . . . , g.

This implies that if λ = a
b > α+

D(f), then the divisor aD− bf∗D is ample and symmet-

ric and therefore, by Remark 2.30 and Theorem 2.32, we have

a · ĥA,D(P ) − b · ĥA,D(f(P )) = a · ĥA,D(P ) − b · ĥA,f∗D(P ) = ĥA,aD−bf∗D(P ) ≥ 0

for every P ∈ A(Q), which is equivalent to ĥA,D(f(P )) ≤ λ · ĥA,D(P ). Since this is true

for every λ ∈ Q such that λ > α+
D(f), this implies that ĥA,D(f(P )) ≤ α+

D(f) · ĥA,D(P ).

In order to prove the lower bound, we consider the line bundle M = f∗Lb ⊗ L−a.

By Theorem 2.36 and Proposition 2.37, M is ample if and only if K(M) is finite and

Hg(A,M−1) ̸= 0. Using Lemma 2.35 as before, we get that

PL,M−1(x) = χ(L) · bg · P af†f

(
x+ a

b

)
= χ(L) ·

g∏
i=1

(x− (bαi − a)) .

By [BL04, Lemma 2.4.7(c)], K(M) = K(M−1), and Theorem 2.36 implies that K(M−1) is

finite and Hg(A,M−1) ̸= 0 if and only if all the roots of PL,M−1 are positive, that is, if and

only if ab < αi for every i = 1, . . . , g.

Again, this means that for every λ = a
b < α−

D(f), the divisor bf∗D − aD is ample and

symmetric and thus we have

b · ĥA,D(f(P )) − a · ĥA,D(P ) = b · ĥA,f∗D(P ) − a · ĥA,D(P ) = ĥA,bf∗D−aD(P ) ≥ 0

for every P ∈ A(Q), which is equivalent to ĥA,D(f(P )) ≥ λ · ĥA,D(P ). Since this is true

for every λ ∈ Q such that λ < α−
D(f), this implies that ĥA,D(f(P )) ≥ α−

D(f) · ĥA,D(P ).
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We now prove that the constants α−
D(f), α+

D(f) are optimal.

Consider the Q-divisor λD−f∗D. Observe that the proof above shows that λD−f∗D

is ample if and only if λ > α+
D(f). From this we deduce that, if λ ∈ Q and λ < α+

D(f),

then λD − f∗D is not nef. Otherwise, (λ + ε)D − f∗D would be ample for every ε > 0
[Laz04, Corollary 1.4.10], which is impossible for ε small enough.

Then, assume that 0 ≤ α̃ < α+
D(f) is such that ĥA,D(f(P )) ≤ α̃ · ĥA,D(P ) for every

P ∈ A(Q). Without loss of generality we can assume that α̃ is rational. Then, since D is

ample, f∗D is nef and, thus, f∗D +D is ample. Therefore, we have that

ĥA,f∗D+D(P ) ≤ ĥA,(α̃+1)D(P )

from which we can deduce, using [Lee16, Lemma 4.1], that (α̃ + 1)D − (f∗D +D) =
α̃D − f∗D is nef, which is impossible.

A similar argument, using the Q-divisor f∗D − λD, shows that one cannot have

ĥA,D(f(P )) ≥ α̃ · ĥA,D(P ) for some α̃ > α−
D(f) and every P ∈ A(Q).

Remark 2.38. Assume that A is simple. If the endomorphism algebra End0(A) is a totally

real number field, a totally definite quaternion algebra or a CM field, then the Albert clas-

sification [Mum08, Theorem 2 (p.186)] implies that there is a unique positive involution

on End0(A). Thus, the Rosati involution associated with any line bundle must be equal

to this unique positive involution. Hence, this proves that in those cases the constants

α−
D(f), α+

D(f) do not depend on D.

Since all the eigenvalues of ρa(f †f) are real and non-negative,

tr(ρa(f †f)) = α1 + . . .+ αg ≥ max {α1, . . . , αg} = α+
D(f)

so we also have the following consequence.

Corollary 2.39. Fix an abelian variety A defined over Q with an ample symmetric divisor D.

Then, for every endomorphism f : A → A, we have that

ĥA,D(f(P )) ≤ tr(ρa(f †f)) · ĥA,D(P )

for every P ∈ A(Q).

2.6.3 Height bounds for isogenies between abelian varieties

We can now generalize Theorem 2.33 to isogenies between different abelian varieties. As

before, it is straightforward to see that the ratio ĥB,D2(ϕ(P ))/ĥA,D1(P ) must be bounded

for non-torsion points P ∈ A(Q) (see for example [Mas84, Lemma 16] for the upper

bound). The following result will make this bound explicit.
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Theorem 2.40. Let A,B be two abelian varieties defined over Q and consider two ample sym-

metric divisors D1, D2 on A and B, respectively. Let also ϕ : A → B be an isogeny. Then there

are explicit constants 0 < γ1 ≤ γ2 such that

γ1 · ĥA,D1(P ) ≤ ĥB,D2(ϕ(P )) ≤ γ2 · ĥA,D1(P )

for every P ∈ A(Q).

Proof. If π1, π2 are the projections of A × B onto A and B respectively, we consider the

divisor D = π∗
1D1 + π∗

2D2 on A×B, which is again ample and symmetric.

By the functorial properties of the canonical height, we have that

ĥA×B,D(P,Q) = ĥA×B,π∗
1D1(P,Q) + ĥA×B,π∗

2D2(P,Q) = ĥA,D1(P ) + ĥB,D2(Q)

for every (P,Q) ∈ (A×B)(Q).

Let also f be the endomorphism of A × B defined as f(P,Q) = (OA, ϕ(P )). We can

then apply Theorem 2.33 to get that

ĥB,D2(ϕ(P )) = ĥA×B,D(f(P,Q))

≤ α+
D(f) · ĥA×B,D(P,Q) = α+

D(f) ·
(
ĥA,D1(P ) + ĥB,D2(Q)

)
.

Since this inequality holds for arbitrary P ∈ A(Q) and Q ∈ B(Q), we can choose Q = OB

and thus we have

ĥB,D2(ϕ(P )) ≤ α+
D(f) · ĥA,D1(P )

so that we can choose γ2 = α+
D(f). Note that this constant is the best possible, in light of

Theorem 2.33.

For the lower bound, let e(ϕ) be the exponent of the finite group kerϕ, i.e. e(ϕ) is the

smallest positive integer n such that [n]P = OA for every P ∈ kerϕ. Then, by [BL04,

Proposition 1.2.6], there exists a unique isogeny ψ : B → A such that ψ ◦ ϕ = [e(ϕ)]A and

ϕ ◦ ψ = [e(ϕ)]B . We then apply Theorem 2.33 to the endomorphism g of A×B such that

g(P,Q) = (ψ(Q), OB) in order to get

ĥA,D1(ψ(Q)) = ĥA×B,D(g(P,Q))

≤ α+
D(g) · ĥA×B,D(P,Q) = α+

D(g) ·
(
ĥA,D1(P ) + ĥB,D2(Q)

)
.

As before, this implies that

ĥA,D1(ψ(Q)) ≤ α+
D(g) · ĥB,D2(Q)

for every Q ∈ B(Q). Then, for each P ∈ A(Q) we can choose Q = ϕ(P ). Thus, the
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inequality above becomes

e(ϕ)2 · ĥA,D1(P ) = ĥA,D1((ψ ◦ ϕ)(P )) ≤ α+
D(g) · ĥB,D2(ϕ(P ))

since D1 is symmetric. Therefore, we can take γ1 = e(ϕ)2

α+
D(g) .

Applying this theorem with B = A and ϕ = [1] the identity gives the following

comparison of canonical heights defined by different divisors (see also [HS13, Exercise

B.3] for a slightly more general but ineffective statement).

Corollary 2.41. Let A be an abelian variety defined over Q and consider two ample symmetric

divisors D1, D2 on A . Then there are explicit constants 0 < γ1 ≤ γ2 such that

γ1 · ĥA,D1(P ) ≤ ĥA,D2(P ) ≤ γ2 · ĥA,D1(P )

for every P ∈ A(Q).

Lastly, we consider the special case g = 1. Given an elliptic curve E, a symmetric

ample divisor D and an endomorphism f ∈ End(E), we clearly have α−
D(f) = α+

D(f) =
deg f , since f † = f̂ . Thus, Theorem 2.33 reduces to the well known identity ĥE,D(f(P )) =
deg f · ĥE,D(P ) (see for example Section 3.6 of [Ser97]).

However, for elliptic curves we may strengthen Theorem 2.40, getting again an iden-

tity instead of an inequality. We prove this using a different method from the one used

before.

Proposition 2.42. Let E1, E2 be two elliptic curves defined over Q, D1, D2 be two ample sym-

metric divisors on E1, E2, respectively, and f : E1 → E2 be an isogeny. If we denote by ĥE1,D1

and ĥE2,D2 the canonical heights defined by the divisors D1 and D2, we then have

ĥE2,D2(f(P )) = degD2
degD1

· deg f · ĥE1,D1(P )

for every P ∈ E1(Q).

Proof. Let a = degD2 · deg f and b = degD1. Then, we have

deg(aD1 − bf∗D2) = a · degD1 − b · deg f · degD2 = 0.

So the divisor aD1 − bf∗D2 on E1 is nef. As noted in Remark 2.30, the canonical height

associated to a nef symmetric divisor is nonnegative, therefore

a · ĥE1,D1(P ) − b · ĥE2,D2(f(P )) = ĥE1,aD1(P ) − ĥE1,bf∗D2(P )

= ĥE1,aD1−b·f∗D2(P ) ≥ 0
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implying that

ĥE2,D2(f(P )) ≤ degD2
degD1

· deg f · ĥE1,D1(P )

since ample divisors on curves have positive degree [Har77, Corollary 3.3].

Similarly, deg(bf∗D2 − aD1) = 0, so that the same argument gives

ĥE2,D2(f(P )) ≥ degD2
degD1

· deg f · ĥE1,D1(P )

concluding the proof.

Remark 2.43. Since any ample symmetric divisor on an elliptic curve is linearly equivalent

to nO + T , where O is the identity element, n is a positive integer and T is a 2-torsion

point, one can also prove Proposition 2.42 more directly, by explicitly computing the pull-

back f∗(nO+T ) (see for example [Fer24, Proposition 2.3] for the special case D1 = 3(O1)
and D2 = 3(O2)).
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Chapter 3

Unlikely intersections in families of

elliptic curves

3.1 Introduction

Let m and n be positive integers. Denote by Eλ the elliptic curve with Legendre equation

Y 2Z = X(X − Z)(X − λZ)

and consider this as a family of elliptic curves Eλ → Y (2) = A1 \ {0, 1}. With a slight

abuse of notation, we will denote by Emλ the m-fold fibered power Eλ ×Y (2) . . .×Y (2) Eλ,

which defines another family Emλ → Y (2). In this chapter we will work with the product

Emλ × Enµ
π−−→ Y (2) × Y (2).

Here, Eµ → Y (2) is the Legendre family with parameter µ.

Take an irreducible curve C ⊆ Emλ ×Enµ , defined over a number field k, not contained

in a fixed fiber. Then, for each point c ∈ C, let π(c) = (λ(c), µ(c)) ∈ Y (2) × Y (2), where λ

and µ are the coordinate functions on Y (2)2. Also, cinC definesm points P1(c), . . . , Pm(c)
on the elliptic curve Eλ(c) and n points Q1(c), . . . , Qn(c) on the elliptic curve Eµ(c). Let

R1 and R2 denote the generic endomorphism rings of Eλ and Eµ when restricted to C,

respectively. In general, these are equal to Z, except in the case where one of the elliptic

curves is constant on C and has complex multiplication. For example, if λ = λ0 is constant

on C and Eλ0 has complex multiplication, then R1 is strictly larger than Z.

We will assume that Eλ and Eµ are not generically isogenous on C and that the Pi’s

are linearly independent overR1 and similarly for theQi’s. This is of course equivalent to

saying that there are no generic non-trivial linear relations between the Pi’s and the Qi’s.

Another way of rephrasing this is to say that C is not contained in a proper subgroup

scheme of Emλ × Enµ → Y (2) × Y (2), again assuming that Eλ and Eµ are not generically
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isogenous on C.

We define the map

J : Y (2) −→ Y (1) = A1

λ 7−→ 28 (λ2 − λ+ 1)3

λ2(λ− 1)2

which sends λ to the j-invariant of Eλ. With a slight abuse of notation, we will also

denote by J the map Y (2)2 → Y (1)2 obtained by applying J component-wise.

Definition 3.1. Let C ⊆ A2 be an irreducible curve and let X,Y be the coordinate func-

tions on A2. We say that C is asymmetric (see [Hab10]) if deg(X|C) ̸= deg(Y |C). Here, by

convention, we set the degree of a constant map to be 0.

If C ⊆ Emλ × Enµ
π−−→ Y (2) × Y (2) is an irreducible curve, we say that C is asymmetric

if the curve C̃ = (J ◦ π)(C) ⊆ A2 is asymmetric.

We are now ready to state the main result of this chapter.

Theorem 3.2. Let C ⊆ Emλ ×Enµ be an irreducible asymmetric curve defined over Q not contained

in a fixed fiber, and define Pi, Qj as above. Suppose moreover that Eλ and Eµ are not generically

isogenous on C and that there are no generic non-trivial relations among P1, . . . , Pm on Eλ and

among Q1, . . . , Qn on Eµ with coefficients in R1 and R2, respectively. Then, there are at most

finitely many c ∈ C(C) such that there exist an isogeny ϕ : Eµ(c) → Eλ(c) and (a1, . . . , am+n) ∈
End(Eλ(c))m+n \ {0} with

a1P1(c) + . . .+ amPm(c) + am+1ϕ (Q1(c)) + . . .+ am+nϕ (Qn(c)) = O.

Notice that this theorem is a special case of the Zilber–Pink Conjecture. In combi-

nation with the results of [BC16], [BC17], [Bar19], and [HP16], and including the case

in which one factor has complex multiplication and a linear relation holds among the

points on the other factor (which will be addressed in future work), it yields a proof of

the conjecture for asymmetric curves in Emλ × Enµ defined over Q. For an account on

the Zilber–Pink conjecture and other problems of Unlikely Intersections, see [Zan12] and

[Pil22].

Remark 3.3. Notice that if Eλ and Eµ are generically isogenous, then C̃ = Y0(N) (for some

N ≥ 1) which is not asymmetric, since the modular polynomials are symmetric (see sub-

section 3.2.1), and therefore have equal degree in both variables. Thus, in principle, the

assumption thatEλ andEµ are not generically isogenous could be removed from the the-

orem. However, in view of the Zilber–Pink conjecture, we expect that the theorem should

remain valid even without the asymmetry assumption. For these reasons, in anticipation

of a possible generalization of this result beyond the asymmetric setting, we prefer to

leave the statement as it is.
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Depending on π(C) ⊆ Y (2)2, we can distinguish three cases:

(i) the coordinate functions λ, µ on C are both non-constant;

(ii) (exactly) one between λ and µ is constant and the associated elliptic curve is not

CM;

(iii) (exactly) one between λ and µ is constant and the associated elliptic curve is CM.

For each c ∈ C(C), let ρ(c) ∈ C be such that End(Eλ(c)) ∼= Z [ρ(c)].

In case (i), by a theorem by André [And98], there are only finitely many c ∈ C(Q)
such that Eλ(c) and Eµ(c) both have complex multiplication. So, recalling that isogenous

elliptic curves have the same endomorphism algebra, we can discard those finitely many

points and assume that ρ = 0 and a ∈ Zm+n \ {0}.

Similarly, in case (ii), we can assume without loss of generality that λ = λ0 is constant

with Eλ0 not CM. Therefore, there are no points c ∈ C(Q) such that Eλ(c) and Eµ(c) both

have complex multiplication, so we can take ρ = 0 and a ∈ Zm+n \ {0} in this case as

well.

In case (iii), we can assume again that λ = λ0 is constant. However, in this case there

are infinitely many points c ∈ C(Q) such that Eλ(c) = Eλ0 and Eµ(c) are both CM, so we

cannot simplify our hypothesis as before. On the other hand, since λ is constant, we can

choose ρ to be a generator of End(Eλ0) ∼= Z[ρ].

Our proof of Theorem 3.2 follows the general strategy first introduced by Pila and

Zannier in [PZ08] and later used, among the others, by Masser and Zannier [MZ10,

MZ12] and by Barroero and Capuano [BC16, Bar19, BC17, BC20]. In what follows, we

sketch the argument only in case (i); the proofs of cases (ii) and (iii) rely on the same

strategy, although their implementation requires additional technical refinements.

Since the elliptic curves Eλ and Eµ are analytically isomorphic to the complex tori

C/Λτ1 and C/Λτ2 , where Λτ = Z + Zτ , with τ in the complex upper half-plane H, we can

consider the elliptic logarithms z1 . . . , zm of P1, . . . , Pm and w1, . . . , wn of Q1, . . . , Qn and

define a uniformization map (τ1, z1 . . . , zm, τ2, w1, . . . , wn) 7→ (λ, P1, . . . , Pm, µ,Q1, . . . , Qn).

By a work of Peterzil and Starchenko, after restricting to a suitable fundamental domain,

this map is definable in the o-minimal structure Ran, exp, so the preimage of C is a defin-

able surface S.

Let C′ be the subset of C we want to prove to be finite. Then, the points c0 ∈ C′ corre-

spond to points on S lying on subvarieties defined by equations with integer coefficients.

We then use a result by Habegger and Pila, which implies that there are ≪ T ε points of S

lying on the subvarieties with coefficients bounded in absolute value by T , provided that

the zi and the wj are algebraically independent over C(τ1, τ2).
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We then use a result by Habegger [Hab10] for asymmetric curves1, giving height

bounds for λ(c0), µ(c0), the Pi(c0) and the Qj(c0). By a result of Masser [Mas88], these

bounds imply that the coefficients a1, . . . , am+n of the linear relation between the m + n

points

P1(c0), . . . , Pm(c0), ϕ(Q1(c0)), . . . , ϕ(Qn(c0))

can be taken to be bounded by a constant times a positive power ofD0 = [k(λ(c0), µ(c0)) : k].
Moreover, all Galois conjugates of c0 are still in C′, so that we have at least D0 points on

S lying on the subvarieties with coefficients bounded in absolute value by some positive

power of D0. Combining this with the previous bound, we get that D0 is bounded and

therefore the claim of the theorem, by Northcott’s theorem.

Remark 3.4. Let C ⊆ Emλ × Enµ be an irreducible curve not contained in a fixed fiber,

not necessarily asymmetric, and define Pi, Qj and τ1, z1, . . . , zm, τ2, w1, . . . , wn as above

(see also Section 3.2.2 for more details). Assume also that Eλ and Eµ are not generically

isogenous on C and that there are no generic non-trivial relations among P1, . . . , Pm on

Eλ and among Q1, . . . , Qn on Eµ with coefficients in R1 and R2, respectively.

Then, in case (i) let ℓ = 0, while in case (ii) and (iii) let ℓ ≥ 0 be the greatest integer

such that there are ãi,j ∈ End(Eλ0) and P̃j ∈ Eλ0(Q), i = 1, . . . ,m and j = 1, . . . , ℓ, such

that the vectors ãj := (ã1,j , . . . , ãm,j), for j = 1, . . . , ℓ, are End(Eλ0)-linearly independent

and

ã1,jP1(c) + . . .+ ãm,jPm(c) = P̃j

for every c ∈ C. In particular, the assumption that there is no generic non-trivial relation

among the Pi and the assumption on the vectors ã1, . . . , ãℓ implies that P̃1, . . . , P̃ℓ are

End(Eλ0)-linearly independent. Up to reordering the Pi, we can then assume that the

matrix (ãi,j)i,j=1,...,ℓ has maximal rank. Hence, we can consider the isogeny

Φ : Emλ0 × Enµ −→ Emλ0 × Enµ

(P1, . . . , Pm, Q1, . . . , Qn) 7−→
(

m∑
i=1

ãi,1Pi, . . . ,
m∑
i=1

ãi,ℓPi, Pℓ+1, . . . , Pm, Q1, . . . , Qn

)

which sends (P,Q) ∈ C to (P̃1, . . . , P̃ℓ, Pℓ+1, . . . , Pm,Q) ∈ Φ(C). Note that the maxi-

mality of ℓ also implies that Pℓ+1, . . . , Pm are generically End(Eλ0)-linearly independent

modulo constants, i.e. there is no relation of the form

aℓ+1Pℓ+1(c) + . . .+ amPm(c) = P̃

with aℓ+1, . . . , am ∈ End(Eλ0) not all zero and P̃ ∈ Eλ0(Q), that holds for every c ∈ C.

1This is the only step of the proof where we use the assumption on the asymmetry of C, see also remark
3.15.
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Notice that if C satisfies the hypotheses of Theorem 3.2, then Φ(C) satisfies them as

well, and vice versa. Moreover, as the restriction of Φ to any fiber is again an isogeny,

images and preimages under Φ of algebraic subgroups of a fiber are again algebraic sub-

groups. This implies that Theorem 3.2 holds for C if and only if it holds for Φ(C).

Therefore, up to applying the isogeny Φ, we will always assume that on the (asym-

metric) curve C that we are considering in Theorem 3.2, P1, . . . , Pℓ are constant and

End(Eλ0)-linearly independent, as above.

Remark 3.5. I am grateful to Gabriel Dill for pointing out that cases (ii) and (iii) can also

be deduced from Theorem 1.2 in [Dil21]. Continuing with the notation introduced in the

previous remark and using the notation from [Dil21], takeA0 = Em−ℓ+n
λ0

, A = Em−ℓ
λ0

×Enµ

and Γ = (Γ0)m−ℓ+n, where Γ0 is the divisible hull of the subgroup of Eλ0(Q) generated

by End(Eλ0) · P̃1, . . . ,End(Eλ0) · P̃ℓ. Then, if C is the projection of Φ(C) onto A, A[1]
Γ ∩ C

consists exactly of the points described in Theorem 3.2 and, by [Dil21, Theorem 1.2], we

get that either this intersection is finite or that the generic fiber Cξ ⊂ C is contained in the

translate of a proper abelian subvariety of Aξ by a point in

(Aξ)tors + Tr(Aξ) = Em−ℓ
λ0

(Q) × (Enµ)tors.

However, the latter means that either Q1, . . . , Qn are generically linearly dependent or

that there is a non trivial linear relation modulo constants involving Pℓ+1, . . . , Pm, con-

tradicting our assumptions.

We use Vinogradov’s ≪ notation: for real-valued functions f(T ) and g(T ), we write

f(T ) ≪ g(T ) if there exists a constant γ > 0 such that f(T ) ≤ γg(T ) for all sufficiently

large T . When not explicitly stated, the implied constant is either absolute or depends

only on C and other fixed data. We use subscripts to indicate any additional dependence

of the implied constant.

3.2 Preliminaries

3.2.1 Isogenies and modular curves

Let E1 ∼= C/Λ1 and E2 ∼= C/Λ2 be two elliptic curves defined over C. Up to homothety,

any lattice in C is of the form Z + Zτ for some τ in the upper half-plane H, and any two

such lattices define isomorphic complex tori if and only if the corresponding parameters τ

lie in the same orbit under the action of SL2(Z) on H by fractional linear transformations.

Therefore, we may choose τ1, τ2 ∈ H such that Λ1 = Z + Zτ1 and Λ2 = Z + Zτ2, with τ1

and τ2 lying in the standard fundamental domain F ⊆ H for the action of SL2(Z). This
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domain is given by

F =
{
τ ∈ H : |τ | ≥ 1,−1

2 ≤ Re(τ) < 1
2

}
\
{
τ ∈ H : |τ | = 1, 0 < Re(τ) < 1

2

}
. (3.1)

In particular, the choice of τ1, τ2 ∈ F ensures that the associated elliptic curves are uniquely

determined up to isomorphism.

Recall that for each isogeny ϕ : E1 → E2 there exists a unique non-zero complex

number α such that αΛ1 ⊆ Λ2 and ϕ corresponds to the multiplication-by-αmap C/Λ1 →
C/Λ2.

Therefore, if E1 and E2 are isogenous, then there exists α ∈ C \ {0} and integers

A,B,C,D not all zero (not necessarily coprime) such that

α · τ1 = Aτ2 +B

α · 1 = Cτ2 +D

thus

τ1 = Aτ2 +B

Cτ2 +D
.

Moreover, the converse is also true. If τ1, τ2 ∈ H and τ1 = Aτ2+B
Cτ2+D for integers A,B,C,D,

then there exists an isogeny ϕ : E1 → E2 corresponding to α = Cτ2 +D.

More generally, we have an action of the group GL+
2 (Q) (here + means that the ma-

trices have positive determinant) on the upper half-plane H which is given by

Mτ = aτ + b

cτ + d

forM =
(
a b
c d

)
∈ GL+

2 (Q). IfM ∈ Mat(Z, 2), we say thatM is primitive if gcd(a, b, c, d) = 1.

We say that an isogeny ϕ is cyclic if kerϕ is a (finite) cyclic group. Then it is known (see

[DS05, Section 1.3]) that any isogeny can be written as the composition of a cyclic isogeny

and a multiplication-by-n isogeny, for some integer n. In particular, cyclic isogeniesE1 →
E2 correspond to relations τ1 = Mτ2 with M primitive. In this case, the degree of the

isogeny is equal to detM .

Recall also that the modular polynomials ΦN (X,Y ) ∈ Z [X,Y ] are the irreducible

symmetric polynomials parametrizing pairs of isomorphism classes of elliptic curves

with a cyclic isogeny of degree N between them [Lan87, Chapter 5]. In other words,

ΦN (j1, j2) = 0 if and only if there exists a cyclic isogeny of degree N between the el-

liptic curves with j-invariants j1 and j2. We then define the classical modular curve

Y0(N) ⊂ A2 as the plane curve defined by the equation ΦN (X,Y ) = 0.

Finally, the following result provides an effective bound for the size of the integers

A,B,C,D when the degree of the isogeny is fixed. It is a consequence of Theorem 1.1 of
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[Orr18] (see Section 1.A therein for details) and constitutes an improvement of Lemma

5.2 of [HP12].

Lemma 3.6. There exists an absolute constant c > 0 with the following property: if E1 =
C/(Z + Zτ1), E2 = C/(Z + Zτ2) are elliptic curves with τ1, τ2 ∈ F, and there exists a cyclic

isogeny ϕ : E1 → E2 of degree N , then there are integers A,B,C,D such that

AD −BC = N τ1 = Aτ2 +B

Cτ2 +D
|A| , |B| , |C| , |D| ≤ cN.

3.2.2 Uniformization

Let A be the quasi-projective variety in Y (2) × (P2)m × Y (2) × (P2)n with coordinates

(λ, [X1 : Y1 : Z1] , . . . , [Xm : Ym : Zm] , µ, [U1 : V1 : W1] , . . . , [Un : Vn : Wn])

and defined by the n+m equations

Y 2
i Zi = Xi(Xi − Zi)(Xi − λZi) i = 1, . . . ,m

V 2
j Wj = Uj(Uj −Wj)(Uj − µWj) j = 1, . . . , n.

We set Pi = [Xi : Yi : Zi] and Qj = [Uj : Vj : Wj ] and we have an irreducible curve C ⊆ A
defined over a number field k such that the projection of A to Y (2) × Y (2) restricts to

rational functions λ and µ on C not both constant.

The aim of this section is to define a uniformization map for A, following closely the

exposition in [Pil09, pp. 2489–2491].

As said before, any elliptic curve over C is analytically isomorphic to a complex torus

C/Λτ , where τ has positive imaginary part and Λτ is the lattice generated by 1 and τ ,

with fundamental domain

Lτ = {z ∈ C : z = x+ τy, x, y ∈ [0, 1)} .

The classical Weierstrass ℘-function ℘(z,Λτ ) = ℘(z, τ) associated to the lattice Λτ , is Λτ -

periodic and satisfies the following differential equation

(℘(z, τ)′)2 = 4℘(z, τ)3 − g2(τ)℘(z, τ) − g3(τ)

where ℘(z, τ)′ = d
dz℘(z, τ) and g2(τ), g3(τ) are defined in [Sil09, Remark 3.5.1]. Then,

the zeros of the polynomial 4X3 − g2(τ)X − g3(τ) are exactly the values of ℘ at the half-

periods:

e1(τ) = ℘

(1
2 , τ

)
e2(τ) = ℘

(1 + τ

2 , τ

)
e3(τ) = ℘

(
τ

2 , τ
)
.
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Note that the ei(τ) are pairwise distinct (see [Sil09, Proposition VI.3.6] and [For51, Sec.

63]) and that the function e3 − e1 has a regular square root on all of H. Therefore, we can

define

ξ(z, τ) = ℘(z, τ) − e1(τ)
e3(τ) − e1(τ) and η(z, τ) = ℘(z, τ)′

2(e3(τ) − e1(τ))
3
2

so that we have the following relation

η(z, τ)2 = ξ(z, τ)(ξ(z, τ) − 1)(ξ(z, τ) − L(τ))

where

L(τ) = e2(τ) − e1(τ)
e3(τ) − e1(τ) . (3.2)

This gives a parametrization of the Legendre family via the map (z, τ) 7→ (L(τ), P (z, τ)),

where

P (z, τ) =

[ξ(z, τ) : η(z, τ) : 1] if z ̸∈ Λτ

[0 : 1 : 0] otherwise

Finally, define the map φ : H×Cm×H×Cn → A(C) sending (τ1, z1, . . . , zm, τ2, w1, . . . , wn)
to (L(τ1), P (z1, τ1), . . . , P (zm, τ1), L(τ2), P (w1, τ2), . . . , P (wn, τ2)). Since this map is not

injective, we would like to find a subset of the domain over which it is possible to define

a univalued inverse function of φ.

By [For51, Sec. 70], there exists a finite index subgroup Γ of SL2(Z) such that L(γτ) =
L(τ) for every γ ∈ Γ. Moreover, as a fundamental domain for the action of Γ on H one

can take the union of six suitably chosen fundamental domains for the action of SL2(Z)
(see [For51, Fig. 48 and 49]). We will call this set B and define

FB = {(τ1, z1, . . . , zm, τ2, w1, . . . , wn) : τ1, τ2 ∈ B, z1, . . . , zm ∈ Lτ1 , w1, . . . , wn ∈ Lτ2} .

Then, φ has a univalued inverse A(C) → FB and we set

Z = φ−1(C(C)) ∩ FB. (3.3)

Following Remark 3.4, we assume that P1 = P̃1, . . . , Pℓ = P̃ℓ are constant on C, so that

Z consists of points of the form (τ1, z̃1, . . . , z̃ℓ, zℓ+1, . . . , zm, τ2, w1, . . . , wn), where z̃i is the

(constant) elliptic logarithm of the constant point P̃i.

Having described the uniformization of A, we now turn to a key result of functional

transcendence that will play an essential role in our arguments. Let Ĉ be the subset of the

smooth points of C(C) that are not ramified points of π|C . In this way, the set C(C) \ Ĉ
consists only of finitely many algebraic points of C.

Fix a point c∗ ∈ Ĉ and let Dc∗ ⊆ Ĉ be a small open disc containing c∗. Let t∗ =
φ−1

|FB
(c∗). Then, there exists an open connected neighbourhoodU∗ ⊆ H×Cm×H×Cn of t∗
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such that φ(U∗) = Dc∗ . Thus, τ1, z1, . . . , zm, τ2, w1, . . . , wn are well-defined holomorphic

functions (possibly constant) onU∗ and, with a slight abuse of notation, we consider them

as holomorphic functions on Dc∗ .

With these definitions, we have the following transcendence result.

Lemma 3.7. The functions zℓ+1, . . . , zm, w1, . . . , wn are algebraically independent over C(τ1, τ2)
on Dc∗ .

Proof. In case (i) we can apply Corollary 2.5 from [BC17] (which is based on a result by

Bertrand [Ber09]).

In case (ii) and (iii), notice that our assumption on C imply that

C ⊆
{(
P̃1, . . . , P̃ℓ

)}
× Em−ℓ

λ0
× Enµ .

Let also F = C (τ2) (note that F = C(τ1, τ2), since τ1 is constant in these cases) and assume

by contradiction that

tr.degFF (zℓ+1, . . . , zm, w1, . . . , wn) < m+ n− ℓ.

Then, if z̃1, . . . , z̃ℓ ∈ Lτ1 are elliptic logarithms of the constant points P̃1, . . . , P̃ℓ, on C we

must have

tr.degFF (z̃1, . . . , z̃ℓ, zℓ+1, . . . , zm, w1, . . . , wn) =

tr.degFF (zℓ+1, . . . , zm, w1, . . . , wn) < m+ n− ℓ.

Applying Theorem 7.1 from [Dil21] to C, we obtain a subvariety W ⊆ Emλ0
×Enµ containing

C. This subvariety is a translate of an abelian subscheme of Emλ0
× Enµ by the product of

a constant section of Emλ0
(defined over Q) with a torsion multisection of Enµ . Moreover,

one has dim(W) ≤ m+ n− ℓ.

Since Q1, . . . , Qn are linearly independent by hypothesis, this implies that there are

ãi,ℓ+1 ∈ End(Eλ0) and P̃ℓ+1 ∈ Eλ0(Q), i = ℓ + 1, . . . ,m, such that ãℓ+1,ℓ+1, . . . , ãm,ℓ+1 are

not all zero and

ãℓ+1,ℓ+1Pℓ+1 + . . .+ ãm,ℓ+1Pm = P̃ℓ+1

contradicting the maximality of ℓ and proving that

tr.degFF (zℓ+1, . . . , zm, w1, . . . , wn) = m+ n− ℓ.

3.2.3 Heights

Let h denote the logarithmic absolute Weil height on PN , as defined in Section 2, and, if

α is an algebraic number, define h(α) = h ([1 : α]). Define also the multiplicative Weil

51



3. UNLIKELY INTERSECTIONS IN FAMILIES OF ELLIPTIC CURVES

height as H(P ) = exp(h(P )).

For an elliptic curve E defined over Q and a point P ∈ E(Q) ⊆ P2(Q), we also have

the Néron-Tate height ĥ, defined as follows (see also [Sil09, VII.9]):

ĥ(P ) = lim
n→∞

1
4nh(2nP ).

By Example 2.24, we know that ĥ is the canonical height associated with the divisor 3O,

so Proposition 2.42 implies that

ĥ2(ϕ(P )) = deg ϕ · ĥ1(P ) (3.4)

for any P ∈ E1(Q), where ϕ : E1 → E2 is any isogeny between the two elliptic curves E1

and E2, defined over Q and ĥ1 and ĥ2 are the Néron-Tate heights on E1 and E2, defined

as above.

Using the same notation as in the previous section, we have that if c ∈ C(Q), then

standard properties of heights (see [HS13, Theorem B.2.5]) imply that, if λ and µ are both

non-constant, we have

h(Pi(c)) ≪ h(λ(c)) + 1 and h(Qj(c)) ≪ h(µ(c)) + 1 (3.5)

for every i = ℓ + 1, . . . ,m and j = 1, . . . , n. In case (ii) and (iii), if λ = λ0 is constant, we

have that h(Pi(c)) ≪ h(µ(c)) + 1, as we can use µ as uniformizing parameter on the base

π(C) = {λ0} ×A1. Moreover, note that if C is defined over a number field k, we also have

[k(c) : k] ≪ [k(λ(c), µ(c)) : k] .

Finally, we will also need another definition of height (from [HP12, Section 7], see also

Definition 4.6 for a generalization).

Definition 3.8. If α is a complex number, we define

H1(α) :=

H(α) = max {|p| , |q|} if α = p
q ∈ Q, gcd(p, q) = 1

+∞ otherwise

For (α1, . . . , αN ) ∈ CN , we also define H1(α1, . . . , αN ) = max {H1(αi)}.

3.2.4 Complex Multiplication

Given a λ0 ∈ Y (2) such thatEλ0 has complex multiplication, we know that the associated

τ0 ∈ B is an algebraic number of degree 2, with minimal polynomial aX2 +bX+c ∈ Z[X]
and discriminant ∆0 = b2 − 4ac < 0. In this case, we know by [Lan87, Theorem 1, p. 90],
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that

End(Eλ0) ∼= Z [ρ0] =: Oλ0

where ρ0 = ∆0+
√

∆0
2 ∈ C and the isomorphism is given by [Sil94, Proposition II.1.1]. Us-

ing this proposition and with a slight abuse of notation, we will identify endomorphisms

with the corresponding complex number.

By Theorem II.4.3. of [Sil94],

[Q(j0) : Q] = cl(Oλ0)

where j0 is the j-invariant of Eλ0 (which is algebraic by [Sil94, Proposition II.2.1]) and

cl(Oλ0) is the class number of Oλ0 .

Moreover, a theorem of Siegel in the form of Theorem 1.2 of [Bre01] gives us the

estimate

|∆0|
1
2 −ϵ ≪ϵ cl(Oλ0) ≪ϵ |∆0|

1
2 +ϵ

so that, in particular, we have |∆0| ≪ [Q(j0) : Q]3. Finally, using Equation (3.4) and the

fact that the endomorphism ρ0 has degree
(
∆2

0 − ∆0
)
/4, we get that

ĥ(ρ0P ) ≪ |∆0|2 ĥ(P ) ≪ [Q(j0) : Q]6 ĥ(P ) ≪ [Q(λ0) : Q]6 ĥ(P ) (3.6)

for every P ∈ Eλ0

(
Q
)

.

3.3 O-minimality and definable sets

In this section we recall the basic properties and some results about o-minimal structures.

For more details see [vdD98] and [vdDM96].

Definition 3.9. A structure is a sequence S = (SN ), N ≥ 1, where each SN is a collection

of subsets of RN such that, for each N,M ≥ 1:

• SN is a boolean algebra (under the usual set-theoretic operations);

• SN contains every semi-algebraic subset of RN ;

• if A ∈ SN and B ∈ SM , then A×B ∈ SN+M ;

• if A ∈ SM+N , then π(A) ∈ SM , where π : RM+N → RM is the projection onto the

first M coordinates.

If S is a structure and, in addition,

• S1 consists of all finite unions of open intervals and points

then S is called an o-minimal structure.
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Given a structure S , we say that S ⊆ RN is a definable set if S ∈ SN .

Given S ⊆ RN and a function f : S → RM , we say that f is a definable function if its

graph
{

(x, y) ∈ RN × RM : x ∈ S, y = f(x)
}

is a definable set. One can easily prove that

images and preimages of definable sets via definable functions are still definable.

Let U ⊆ RM+N . For t0 ∈ RM , we set Ut0 =
{
x ∈ RN : (t0, x) ∈ U

}
and call U a family

of subsets of RN , while Ut0 is called the fiber of U above t0. If U is a definable set, then we

call it a definable family and it is easy to prove that the fibers Ut0 are also definable.

Proposition 3.10 ([vdDM96], 4.4). Let U ⊆ RM × RN be a definable family in a fixed o-

minimal structure S. Then, there exists an integer n such that, for every t0 ∈ RM , Ut0 has at

most n connected components.

While there are many examples of o-minimal structures (see [vdDM96]), in this chap-

ter we will work with the structure Ran,exp (see [Pil22, Chapter 8] for details about this

structure), which was proved to be o-minimal by van den Dries and Miller [vdDM94].

For a family Z ⊆ RM × RN = RM+N and a positive real number T define

Z∼(Q, T ) :=
{

(y, z) ∈ Z : y ∈ QM , H1(y) ≤ T
}

where H1(y) is the 1-polynomial height defined in the previous section and let π1, π2 be

the projections of Z to the first M and last N coordinates, respectively.

Proposition 3.11 ([HP16], Corollary 7.2). Let Z ⊆ RM+N be a definable set. For every

ε > 0 there exists a positive constant c = c(Z, ε) with the following property. If T ≥ 1 and

|π2(Z∼(Q, T ))| > cT ε, then there exists a continuous definable function δ : [0, 1] → Z such

that:

1. the restriction δ|(0,1) is real analytic (since Ran, exp admits analytic cell decomposition);

2. the composition π1 ◦ δ : [0, 1] → RM is semi-algebraic and its restriction to (0, 1) is real

analytic;

3. the composition π2 ◦ δ : [0, 1] → RN is non-constant.

Lastly, we want to prove that the set Z defined in (3.3) is definable in Ran,exp. In the

following, definability will always be considered in Ran,exp, and we say that X ⊆ CN

is definable if the set {(Re(z1), Im(z1), . . . ,Re(zN ), Im(zN )) : (z1, . . . , zN ) ∈ X} ⊆ R2N is

definable. Similarly, a function f : X → C is definable if and only if Re(f) and Im(f) are

both definable.

Let D be the usual fundamental domain for the action of SL2(Z) on H, then the restric-

tion of ℘(z, τ) to {(z, τ) : τ ∈ D, z ∈ Lτ} is definable by work of Peterzil and Starchenko

[PS05]. Therefore, ℘(z, τ) is definable even if restricted to {(z, τ) : τ ∈ γD, z ∈ Lτ}, for
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any fundamental domain γD for SL2(Z). Since B is the union of six such fundamental

domains, we have that ℘(z, τ) is also definable when restricted to {(z, τ) : τ ∈ B, z ∈ Lτ}.

Thus, the uniformization map φ, defined in the previous section and restricted to FB, is

definable. Since C(C) is semi-algebraic and FB is definable, we get that Z = φ−1(C(C)) ∩
FB is definable.

3.4 The main estimate

We continue with the notations established in the previous sections and, for every T ≥ 1,

define the set

Z(T ) =
{

(τ1, z̃1, . . . , z̃ℓ, zℓ+1, . . . , zm, τ2, w1, . . . , wn) ∈ Z : |τ1|, |τ2| ≤ T, Im(τ1) ≥ 1
T
,

∃A,B,C,D ∈ Z ∩ [−T, T ] with AD −BC ̸= 0, τ2 = Aτ1 +B

Cτ1 +D
,

∃ (a1, . . . , am+n, b1, . . . , bm+n) ∈ Z2m+2n with (aℓ+1 + bℓ+1ρ, . . . , am+n + bm+nρ) ̸= 0,

max |ai| , |bi| ≤ T and
ℓ∑
i=1

(ai + biρ)z̃i +
m∑

i=ℓ+1
(ai + biρ)zi + (Cτ1 +D)

n∑
j=1

(am+j + bm+jρ)wj ∈ Z + Zτ1

}

where Z is the set defined in (3.3), z̃1, . . . , z̃ℓ are the elliptic logarithms of the constant

points P̃1, . . . , P̃ℓ and ρ is either 0 in case (i) and (ii), or a fixed quadratic integer in case

(iii).

The goal of this section is to prove the following result.

Proposition 3.12. Under the hypotheses of Theorem 3.2, for all ε > 0, we have #Z(T ) ≪ε T
ε,

for all T ≥ 1.

To prove this, we will apply Proposition 3.11 to the definable set W consisting of

tuples of the form

(α1, . . . , αm+n, β1, . . . , βm+n, A,B,C,D, ξ1, ξ2,

ζ1, θ1, x̃1, ỹ1, . . . , x̃ℓ, ỹℓ, xℓ+1, yℓ+1, . . . , xm, ym, ζ2, θ2, u1, v1, . . . , un, vn)

in R2m+2n+6 × R2m+2n+4, satisfying the following relations:

(αℓ+1 + βℓ+1ρ, . . . , αm+n + βm+nρ) ̸= 0 AD −BC ̸= 0 C(ζ1 + θ1i) +D ̸= 0

(ζ1 + θ1i, x̃1 + ỹ1i, . . . , x̃ℓ + ỹℓi, xℓ+1 + yℓ+1i, . . . , xm + ymi, ζ2 + θ2i, u1 + v1i, . . . , un + vni) ∈ Z

(C(ζ1 + θ1i) +D) (ζ2 + θ2i) = A(ζ1 + θ1i) +B
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ℓ∑
p=1

(αp + βpρ)(x̃p + ỹpi) +
m∑

q=ℓ+1
(αq + βqρ)(xq + yqi)

+ (C(ζ1 + θ1i) +D)
n∑
r=1

(αm+r + βm+rρ)(ur + vri) = ξ1 + ξ2(ζ1 + θ1i)

where i is the imaginary unit. In particular, we consider for each T ≥ 1

W∼(Q, T ) := {(α1, . . . , vn) ∈ W : H1(α1, . . . , αm+n, β1, . . . , βm+n, A,B,C,D, ξ1, ξ2) ≤ T}

where we recall that H1(α1, . . . , ξ2) is finite if and only if (α1, . . . , ξ2) ∈ Q2m+2n+6.

Let π1, π2 be the projections on the first 2m+2n+6 and the last 2m+2n+4 coordinates,

respectively.

Lemma 3.13. For every ε > 0, #π2 (W∼(Q, T )) ≪ε T
ε, for all T ≥ 1.

Proof. Fix ε > 0 and let c = c(W, ε) be the constant given by Proposition 3.11. Suppose

also that #π2 (W∼(Q, T )) > cT ε for some T ≥ 1.

Then, by Proposition 3.11, there exists a continuous definable function δ : [0, 1] → W

such that its restriction to (0, 1) is real analytic, δ1 = π1 ◦ δ : [0, 1] → R2m+2n+6 is semi-

algebraic and δ2 = π2 ◦ δ : [0, 1] → R2m+2n+4 is non-constant. Thus, there exists an

infinite connected J ⊆ [0, 1] such that δ1(J) is contained in an algebraic curve and δ2(J)
has positive dimension.

Consider the coordinates

α1, . . . , αm+n, β1, . . . , βm+n, A,B,C,D, ξ1, ξ2,

ζ1, θ1, x̃1, ỹ1, . . . , x̃ℓ, ỹℓ, xℓ+1, yℓ+1, . . . , xm, ym, ζ2, θ2, u1, v1, . . . , un, vn

as functions on J and define

τi = ζi + θii, z̃p = x̃p + ỹpi, zq = xq + yqi wr = ur + vri

with i = 1, 2, p = 1, . . . , ℓ, q = ℓ+ 1, . . . ,m and r = 1, . . . n.

On J , the functions α1, . . . , αm+n, β1, . . . , βm+n, A,B,C,D, ξ1, ξ2 satisfy 2m+ 2n+ 6 −
1 = 2m + 2n + 5 independent algebraic relations over C (because they are functions on

an algebraic curve). Since (αℓ+1 + βℓ+1ρ, . . . , αm+n + βm+nρ) ̸= 0 and by the relations

ℓ∑
p=1

(αp + βpρ)z̃p +
m∑

q=ℓ+1
(αq + βqρ)zq + (Cτ1 +D)

n∑
r=1

(αm+r + βm+rρ)wr = ξ1 + ξ2τ1

(Cτ1 +D) τ2 = Aτ1 +B

56



3.4. THE MAIN ESTIMATE

it follows that the 2m+ 2n+ 6 + (m− ℓ) + n = 3m+ 3n+ 6 − ℓ functions

α1, . . . , αm+n, β1, . . . , βm+n, A,B,C,D, ξ1, ξ2, zℓ+1, . . . , zm, w1, . . . , wn

satisfy 2m+ 2n+ 5 + 2 = 2m+ 2n+ 7 independent algebraic relations over F = C (τ1, τ2).

Finally, let

W = (τ1(J), z̃1, . . . , z̃ℓ, zℓ+1(J), . . . , zm(J), τ2(J), w1(J), . . . , wn(J)) ⊆ Z,

which has positive dimension since δ2(J) has positive dimension, and consider τ1, zℓ+1,

. . . , zm, τ2, w1, . . . , wn as holomorphic functions on φ(W) ⊆ C(C). The algebraic relations

found above can be analytically continued to an open disc D in φ(W) ∩ Ĉ. Therefore,

trdegFF (zℓ+1, . . . , zm, w1, . . . , wn) ≤ 3m+ 3n+ 6 − ℓ− (2m+ 2n+ 7) = m+ n− ℓ− 1

which implies that zℓ+1, . . . , zm, w1, . . . , wn are algebraically dependent over F on D and

thus, by Lemma 3.7, we get a contradiction, proving the proposition.

Proof of Proposition 3.12. If (τ1, z̃1, . . . , z̃ℓ, zℓ+1, . . . , zm, τ2, w1, . . . , wn) ∈ Z(T ), then there

are integers a1, . . . , am+n, b1, . . . , bm+n, A,B,C,D with absolute value bounded by T and

integers ξ1, ξ2 such that

(αℓ+1 + βℓ+1ρ, . . . , αm+n + βm+nρ) ̸= 0 AD −BC ̸= 0 Cτ1 +D ̸= 0

(Cτ1 +D) τ2 = Aτ1 +B

ℓ∑
i=1

(ai + biρ)z̃i +
m∑

i=ℓ+1
(ai + biρ)zi + (Cτ1 +D)

n∑
j=1

(am+j + bm+jρ)wj = ξ1 + ξ2τ1

And since |τ1|, |τ2|, |A|, |B|, |C|, |D|, |a1|, . . . , |am+n|, |b1| , . . . , |bm+n| ≤ T and z̃p, zq ∈ Lτ1 ,

wr ∈ Lτ2 we have that∣∣∣∣∣∣
ℓ∑

p=1
(ap + bpρ)z̃p +

m∑
q=ℓ+1

(aq + bqρ)zq + (Cτ1 +D)
n∑
r=1

(am+r + bm+rρ)wr

∣∣∣∣∣∣
≤

ℓ∑
p=1

(|ap| + |bp| |ρ|) |z̃p| +
m∑

q=ℓ+1
(|aq| + |bq| |ρ|) |zq| + |Cτ1 +D|

n∑
r=1

(|am+r| + |bm+r| |ρ|) |wr|

≪ T · max {1, |τ1|} + (T · max {1, |τ1|}) · T · max {1, |τ2|} ≪ T 4

Therefore, we have

|ξ1 + ξ2τ1| =

∣∣∣∣∣∣
ℓ∑

p=1
(ap + bpρ)z̃p +

m∑
q=ℓ+1

(aq + bqρ)zq + (Cτ1 +D)
n∑
r=1

(am+r + bm+rρ)wr

∣∣∣∣∣∣ ≪ T 4
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from which we deduce that |ξ2| ≪ T 5, since Im(τ1) ≥ 1
T and

T 4 ≫ |ξ1 + ξ2τ1| ≥ |Im(ξ1 + ξ2τ1)| = |ξ2Im(τ1)| ≥ |ξ2|
T
.

This implies that

|ξ1| = |ξ1 + ξ2τ1 − ξ2τ1| ≤ |ξ1 + ξ2τ1| + |ξ2| · |τ1| ≪ T 4 + T 5 · T ≪ T 6.

Hence we get that

(a1, . . . , am+n, b1, . . . , bm+n, A,B,C,D, ξ1, ξ2,

Re(τ1), Im(τ1),Re(z̃1), Im(z̃1), . . . ,Re(z̃ℓ), Im(z̃ℓ),Re(zℓ+1), Im(zℓ+1), . . . ,Re(zm), Im(zm),

Re(τ2), Im(τ2),Re(w1), Im(w1), . . . ,Re(wn), Im(wn)) ∈ W∼(Q, νT 6)

for some positive constant ν. Finally, consider the map

Z(T ) −→ π2
(
W∼(Q, νT 6)

)
(τ1, . . . , wn) 7−→ (Re(τ1), Im(τ1), . . . ,Re(wn), Im(wn)) .

Since this map is injective, the conclusion follows from Lemma 3.13.

3.5 Arithmetic bounds

Let C be as in Theorem 3.2 and let C′ be the set of points c ∈ Ĉ(C) such that there exists an

isogeny ϕc : Eµ(c) → Eλ(c) and a,b ∈ Zm+n with (aℓ+1 + bℓ+1ρ, . . . , am+n + bm+nρ) ̸= 0
and

ℓ∑
p=1

(ap + bpρ)P̃p +
m∑

q=ℓ+1
(aq + bqρ)Pq(c) +

n∑
r=1

(am+r + bm+rρ)ϕc(Qr(c)) = O

where ρ is 0 in cases (i) and (ii), and a fixed generator for End(Eλ0) in case (iii). Moreover,

we can also assume that ϕc is a cyclic isogeny.

Since C is defined over Q, the curve C̃ = (J ◦ π)(C) is also defined over Q and thus,

for every c ∈ C′, (J(λ(c)), J(µ(c))) ∈ C̃ ∩
⋃
N≥1 Y0(N). As all the modular curves Y0(N)

are defined over Q, all the points (J(λ(c)), J(µ(c))) are algebraic, which implies that also

λ(c) and µ(c) are algebraic for every c ∈ C′. From this, it follows that C′ is a subset of

C(Q) and thus we can define, for every c0 ∈ C′, D0 := [k(λ(c0), µ(c0)) : k], where k is the

field of definition of C.

All the constants appearing in this section depend only on C, the field k and on the

integers m,n, unless otherwise stated.
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Lemma 3.14. Let c0 ∈ C′ and let N0 be the minimal degree of an isogeny ϕc0 : Eµ(c0) → Eλ(c0).

Then, for every ε > 0, there exist positive constants γ1, γ2 (depending on ε) such that

h(λ(c0)), h(µ(c0)) ≤ γ1D
ε
0

N0 ≤ γ2D
2+ε
0 .

Proof. Fix c0 ∈ C′, and let N0 be as above. Note that an isogeny of minimal degree be-

tween two elliptic curves is necessarily cyclic, since otherwise it would factor as the com-

position of a cyclic isogeny and a multiplication-by-n map.

Therefore,

(J(λ(c0)), J(µ(c0))) ∈ (C̃ ∩ Y0(N0))(Q)

Since C̃ is asymmetric, we may apply [Hab10, Theorem 1.1] together with Proposition 2.11

to deduce

h(λ(c0)), h(µ(c0)) ≪ log(1 +N0).

Next, by Théorème 1.4 of [GR14b] , we have

N0 ≪ D2
0 · max

{
hF (Eλ(c0)), log(D0), 1

}2
,

where hF (Eλ(c0)) is the (stable) Faltings height ofEλ(c0). By Proposition 2.1 of [Sil86], one

has

hF (Eλ(c0)) ≪ h
(
j(Eλ(c0))

)
+ 1.

Since j(Eλ(c0)) is a rational function in λ(c0), Proposition 2.11 gives

h
(
j(Eλ(c0))

)
+ 1 ≪ h(λ(c0)) + 1 ≪ log(1 +N0) ≪ϵ1 N

ϵ1
0

for every ϵ1 > 0. Moreover, for every ϵ2 > 0 we have logD0 ≪ϵ2 D
ϵ2
0 . Hence

N0 ≪ D2
0 · max

{
hF (Eλ(c0)), log(D0), 1

}2
≪ϵ1,ϵ2 D

2+2ϵ2
0 ·N2ϵ1

0 .

Now fix ε > 0. Choosing ϵ1 = ε
8+4ε and ϵ2 = ε

4 yields

N0 ≪ε D
2+ε
0 .

Finally, recalling that h(λ(c0)), h(µ(c0)) ≪ log(1 +N0) ≪ϵ N
ϵ
0 , we conclude

h(λ(c0)), h(µ(c0)) ≪ε D
ε
0

for every ε > 0.
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Remark 3.15. Note that this lemma above is the only part of the proof where we need to

use the hypothesis that C is asymmetric, while all the other steps are true also for non-

asymmetric curves. Thus, if one was able to prove this lemma for an arbitrary C or any

of the Conjectures 21.20, 21.23 or 21.24 from [Pil22], then Theorem 3.2 would follow for

any C.

Lemma 3.16. Let c0 ∈ C′. Then, there exist positive constants γ3, γ4, γ5 such that

ĥ(Pq(c0)) ≤ γ3D0 for every q = ℓ+ 1, . . . ,m

ĥ(ϕc0(Qr(c0))) ≤ γ4D
4
0 for every r = 1, . . . , n.

Moreover, the Pq(c0) and the ϕc0(Qr(c0)) are defined over a field K ⊇ k(λ(c0), µ(c0)) with

[K : Q] ≤ γ5D
2
0.

Proof. We use the same notation as in the previous proof.

Using work of Zimmer [Zim76, Theorem], the previous lemma (with ε = 1) and the

bounds (3.5), in case (i) we have

ĥ(Pp(c0)) ≤ h(Pp(c0)) + γ6 (h(λ(c0)) + 1) ≤ γ7 (h(λ(c0)) + 1) ≤ γ2D0

while in case (ii) and (iii) we get the same estimate by

ĥ(Pp(c0)) ≤ h(Pp(c0)) + γ6 (h(µ(c0)) + 1) ≤ γ7 (h(µ(c0)) + 1) ≤ γ2D0.

Similarly, ĥ(Qr(c0)) ≤ γ8D0. So, by Equation (3.4) and Lemma 3.14 (again with ε = 1),

we get that

ĥ(ϕc0(Qr(c0))) ≤ γ8N0D0 ≤ γ3D
4
0

Lemma 7.2 in [BC16] implies that the Pp(c0) and the Qr(c0) are defined over a field K1 of

degree ≤ γ9D0 over Q. Moreover, by [MW90, Lemma 6.1], ϕc0 is defined over a field K2

of degree at most 12 over k(λ(c0), µ(c0)), and thus [K2 : Q] ≤ 12D0. Therefore, the points

ϕc0(Qr(c0)) are defined over the compositum K1K2 which has degree ≪ D2
0 over Q.

Next, we show that for any c0 ∈ C′ we can choose “small” coefficients ai ∈ Z for the

linear relation.

Lemma 3.17. For any c0 ∈ C′, there exist a,b ∈ Zm+n with (aℓ+1 + bℓ+1ρ, . . . , am+n +
bm+nρ) ̸= 0 and

ℓ∑
p=1

(ap + bpρ)P̃p +
m∑

q=ℓ+1
(aq + bqρ)Pq(c0) +

n∑
r=1

(am+r + bm+rρ)ϕc0(Qr(c0)) = O
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and such that

max {|ai| , |bi|} ≤ γ10D
η1
0

for some positive constants γ10, η1.

Proof. For cases (i) and (ii), we already saw that we can take ρ = 0 and therefore we can

choose b = 0. So we can apply Lemma 6.1 of [BC16] (which is in turn based on a result

by Masser [Mas88]), to the points P̃p, Pq(c0) and ϕc0(Qr(c0)), using also Lemma 3.14 and

the height bounds from the previous lemma.

In case (iii), we use again the above-mentioned lemma by Barroero and Capuano, this

time with the points P̃p, ρP̃p, Pq(c0), ρPq(c0), ϕc0(Qr(c0)) and ρϕc0(Qr(c0)), recalling that

by (3.6), we have that

ĥ(ρPq(c0)) ≪ D6
0 · ĥ(Pq(c0)) ≪ D7

0

ĥ(ρϕc0(Qr(c0))) ≪ D6
0 · ĥ(ϕc0(Qr(c0))) ≪ D10

0 .

A priori, applying [BC16, Lemma 6.1] in cases (ii) and (iii) gives a,b ∈ Zm+n with (a1 +
b1ρ, . . . , am+n + bm+nρ) ̸= 0, but we claim that we cannot have (aℓ+1 + bℓ+1ρ, . . . , am+n +
bm+nρ) = 0, otherwise it would mean that the constant points P̃1, . . . , P̃ℓ are End(Eλ0)-

linearly dependent, contradicting our assumptions.

For the next lemma, let τ1(c) = τ1(φ−1
|FB

(c)) ∈ B for every c ∈ C(C) and similarly for

τ2(c), where φ is the uniformization map defined in Section 3.2.2.

Lemma 3.18. There exist positive constants γ11, γ12 such that for every c0 ∈ C′ we have

|τ1(c0)|, |τ2(c0)| ≤ γ11D
2
0

Im(τ1(c0)), Im(τ2(c0)) ≥ γ12
1
D4

0
.

Proof. Let F be the usual fundamental domain for the action of SL2(Z) on H (defined in

(3.1)) and let τ ∈ F. Then, Lemma 1 in [BMZ13] implies that e2πIm(τ) ≤ 2079 + |j(τ)|.
Hence, if |j(τ)| ≤ 2, then Im(τ) ≤ 1

2π log(2081) = γ13. Equivalently, for every τ ∈ F such

that Im(τ) > γ13, we have |j(τ)| > 2. So, if Im(τ) > γ13, we then get that

Im(τ) ≤ 1
2π log (2079 + |j(τ)|) ≤ log(2081)

2π log(2) log |j(τ)| .

Therefore, for every τ ∈ F we have Im(τ) ≪ max {1, log |j(τ)|}.

Now, assume that τ1(c0) = M · τ ′
1, for some τ ′

1 ∈ F and M =
(
a b
c d

)
∈ SL2(Z). Then,

Im(τ1(c0)) = Im
(
aτ ′

1 + b

cτ ′
1 + d

)
= Im(τ ′

1)
|cτ ′

1 + d|2
≤ Im(τ ′

1)
c2 − cd+ d2 ≪M max

{
1, log

∣∣j(τ ′
1)
∣∣} .
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3. UNLIKELY INTERSECTIONS IN FAMILIES OF ELLIPTIC CURVES

As the j-function is invariant under the action of SL2(Z), we have that

j(τ1(c0)) = j(M · τ ′
1) = j(τ ′

1),

so that Im(τ1(c0)) ≪M max {1, log |j(τ1(c0))|}.

Furthermore, we have that j(τ1(c0)) = J(L(τ1(c0))) = J(λ(c0)), where J(λ) = 28 (λ2−λ+1)3

λ2(λ−1)2

and L was defined in (3.2). Since λ(c0) ∈ Q \ {0, 1}, this implies that j(τ1(c0)) ∈ Q.

Then, using the inequality log |α| ≤ [Q(α) : Q]h(α) for every non-zero α ∈ Q, we get

log |j(τ1(c0))| ≤ [Q(j(τ1(c0))) : Q]h(j(τ1(c0))) = [Q(J(λ(c0))) : Q]h(J(λ(c0)))

≪ [Q(λ(c0)) : Q] (h(λ(c0)) + 1) ≪ D2
0

by Lemma 3.14 and Proposition 2.11. Combining this with the previous bound gives

Im(τ1(c0)) ≤ γ14(M)D2
0, for some positive constant γ14(M) depending on M . Since B is

the union of finitely many translates of F by elements of SL2(Z), there are only finitely

many such M to consider. Thus, we have that Im(τ1(c0)) ≤ γ15D
2
0, where γ15 is an

absolute constant, and that |Re(τ1(c0))| ≪ 1. Therefore, we get that |τ1(c0)| ≪ D2
0.

For the lower bound on the imaginary part, first note that if τ ∈ F, then Im(τ) ≥
√

3
2 .

Again, assume that τ1(c0) = M · τ ′
1, for some τ ′

1 ∈ F and M =
(
a b
c d

)
∈ SL2(Z). Then,

Im(τ1(c0)) = Im
(
aτ ′

1 + b

cτ ′
1 + d

)
= Im(τ ′

1)
|cτ ′

1 + d|2
≥ Im(τ ′

1)
(|c| + |d|)2 · max {1, |τ ′

1|}2 ≫M

1
max {1, |τ ′

1|}2 .

From before we get that Im(τ ′
1) ≪ max {1, log |j(τ ′

1)|} = max {1, log |j(τ1(c0))|} ≪ D2
0,

which implies |τ ′
1| ≪ D2

0, since τ ′
1 ∈ F implies |Re(τ ′

1)| ≤ 1
2 . Hence,

Im(τ1(c0)) ≫M

1
max {1, |τ ′

1|}2 ≫ 1
D4

0
.

As before, we need to consider only finitely many choices of M ∈ SL2(Z), so we have

that Im(τ1(c0)) ≫ 1
D4

0
, where the implied constant is absolute.

Similar arguments give the respective bounds for τ2(c0).

3.6 Proof of Theorem 3.2

We want to show that the set C′ (defined at the start of the previous section) is finite. Since

the map π|C : c 7→ (λ(c), µ(c)) is finite-to-one, Northcott’s theorem together with Lemma

3.14 reduces the problem to bounding the degree D0 of λ(c) and µ(c) over k.

Let c0 ∈ C′ and σ ∈ Gal(k/k). Notice that σ(c0) ∈ C′. Indeed, we have

j
(
Eλ(σ(c0))

)
= j

(
Eσ(λ(c0))

)
= J (σ(λ(c0))) = σ (J (λ(c0))) = σ

(
j
(
Eλ(c0)

))
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and an analogous identity holds for µ(c0) in place of of λ(c0). If N0 is defined as in

Lemma 3.14, it follows that

ΦN0

(
j
(
Eλ(σ(c0))

)
, j
(
Eµ(σ(c0))

))
= σ

(
ΦN0

(
j
(
Eλ(c0)

)
, j
(
Eµ(c0)

)))
= 0,

so there exists a cyclic isogeny ϕσ(c0) : Eµ(σ(c0)) → Eλ(σ(c0)) of degreeN0. Since deg σ(ϕc0) =
deg ϕc0 = N0, we can take ϕσ(c0) = σ (ϕc0).

Thus, as C is defined over k, we also have

σ(P̃p) = P̃p , Pq(σ(c0)) = σ (Pq(c0)) ,

ϕσ(c0) (Qr(σ(c0))) = ϕσ(c0) (σ (Qr(c0))) = σ (ϕc0 (Qr(c0)))

for every p = 1, . . . , ℓ, q = ℓ+1, . . . ,m, r = 1, . . . , n. Moreover, in case (iii), we can assume

without loss of generality that the generator ρ of End(Eλ0) is defined over k, so that

σ(ρ) = ρ. Recall that we are using [Sil94, Proposition II.1.1] to identify endomorphisms

with complex numbers. Furthermore, [Sil94, Proposition II.2.2] guarantees that under

this identification the action of Gal(k/k) on these two objects is the same.

So, in all cases, we have:

ℓ∑
p=1

(ap + bpρ)P̃p +
m∑

q=ℓ+1
(aq + bqρ)Pq(σ(c0)) +

n∑
r=1

(am+r + bm+rρ)ϕσ(c0)(Qq(ρ(c0)))

= σ
( ℓ∑
p=1

(ap + bpρ)P̃p +
m∑

q=ℓ+1
(aq + bqρ)Pq(c0) +

n∑
r=1

(am+r + bm+rρ)ϕc0(Qr(c0))
)

= O

on Eλ(σ(c0)), since the ai and bi are integers.

Now, consider the point φ−1
|FB

(σ(c0)) ∈ Z with coordinates

(
τσ1 , z̃1, . . . , z̃ℓ, z

σ
ℓ+1, . . . , z

σ
m, τ

σ
2 , w

σ
1 , . . . , w

σ
n

)
(here the superscript σ does not denote a Galois conjugate). By the previous equation

and lemmas 3.17 and 3.18 we have relations

ℓ∑
p=1

(ap + bpρ)z̃p +
m∑

q=ℓ+1
(aq + bqρ)zσq + (Cστσ1 +Dσ)

(
n∑
r=1

(am+r + bm+rρ)wσr

)
∈ Z + Zτσ1 ,

τσ2 = Aστσ1 +Bσ

Cστσ1 +Dσ

with (aℓ+1 + bℓ+1ρ, . . . , am+n + bm+nρ) ̸= 0 and

max {|ai| , |bi|} ≤ γ10D
η1
0 , |τσ1 | , |τσ2 | ≤ γ11D

2
0, Im(τσ1 ) ≥ γ12

1
D4

0
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and |Aσ| , |Bσ| , |Cσ| , |Dσ| ≤ γ16N0 ≤ γ17D
3
0 by Lemma 3.6 and Lemma 3.14.

So,

φ−1
|FB

(σ(c0)) ∈ Z (γDη
0)

where γ = max
{
γ10, γ11,

1
γ12
, γ17

}
and η = max {η1, 4}.

There are at least [k(c0) : k] ≥ [k(λ(c0), µ(c0)) : k] = D0 different

(
τσ1 , z̃1, . . . , z̃ℓ, z

σ
ℓ+1, . . . , z

σ
m, τ

σ
2 , w

σ
1 , . . . , w

σ
n

)
in Z (γDη

0). However, applying Proposition 3.12 with ε = 1
2η gives a contradiction if D0

is large enough. This proves that D0 is bounded and, consequently, Theorem 3.2.
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Chapter 4

Unlikely intersections in families of

abelian varieties

4.1 Introduction

Let S be a smooth, irreducible, quasi-projective curve, and let π : A → S be an abelian

scheme of relative dimension g ≥ 1, both defined over Q. For any (not necessarily closed)

point s ∈ S we denote the fiber of A over s by As. Let O : S → A be the zero section of A
and consider an irreducible curve C ⊆ A, also defined over Q.

Recall that an irreducible component of a subgroup scheme of A is either a compo-

nent of an algebraic subgroup of a fiber or it dominates the base curve S. We say that a

subgroup scheme is flat if all of its irreducible components are of the latter kind.

We call A → S isotrivial if it becomes constant after a base change, i.e. A ×S S
′ ∼=

A×QS
′ for some finite base change S′ → S and some fixed abelian varietyA/Q. LetA0×S

be the largest constant abelian subscheme of A → S, we say that a section σ : S → A
is constant if there exists a0 ∈ A0(C) such that σ is the composition of S → A0 × S,

s 7→ (a0, s) with the inclusion of A0 × S into A.

The goal of this chapter is to further investigate the intersections of C with subgroup

schemes of A. In [BC20], Barroero and Capuano studied the intersections of C with flat

subgroup schemes of codimension at least 2 and proved that if C is not contained in a

proper subgroup scheme, then its intersection with the union of all such codimension

≥ 2 flat subgroup schemes of A is finite.

In the isotrivial case or if C is contained in a fixed fiber, this has already been addressed

by Habegger and Pila [HP16, Theorem 9.14], who proved the Zilber–Pink conjecture for

curves in abelian varieties defined over Q. Thus, our focus is instead on the case where

the abelian scheme A → S is not isotrivial and C is not contained in a fixed fiber.

In this chapter, we extend these results by considering the intersections of C with the

proper algebraic subgroups of the CM fibers of A, proving the following theorem.
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Theorem 4.1. Let S and A → S be as above and assume that A is not isotrivial. Let C ⊆ A an

irreducible curve defined over Q that is neither contained in a fixed fiber nor in a translate of a

proper flat subgroup scheme of A by a constant section, even after a finite base change. Then, the

intersection of C with the union of all proper algebraic subgroups of the CM fibers of A is a finite

set.

Since every algebraic subgroup of an abelian variety is a union of irreducible compo-

nents of the kernel of an endomorphism, the theorem can be restated as follows: under

the same assumptions as above, there are at most finitely many P ∈ C(C) such that

Aπ(P ) has complex multiplication and there exists a non-zero f ∈ End(Aπ(P )) such that

f(P ) = Oπ(P ).

In [Bar19], Barroero proved the same result in the case of a fibered power of an elliptic

scheme. Thus, Theorem 4.1 can be viewed as a generalization of Barroero’s result to more

general abelian schemes.

The above theorem also proves a stronger partial version of Conjecture 6.1 of [Pin05b],

since Pink’s conjecture only considers algebraic subgroups of codimension at least 2 of the

fibers. As a matter of fact, Theorem 4.1 is a particular case of the Zilber–Pink conjecture

for a curve in an abelian scheme, which is known to imply Conjecture 6.1 of [Pin05b] for

abelian schemes.

Our proof of Theorem 4.1 follows the well-established Pila-Zannier strategy, first in-

troduced in [PZ08] and later used, among others, by Masser and Zannier [MZ10, MZ12],

by Barroero and Capuano [BC16, Bar19, BC17, BC20] and in the previous chapter.

To implement this strategy, we first reduce the problem to the case of restrictions of

the universal family of abelian varieties over a quasi-projective curve in the moduli space

Ag of principally polarized abelian varieties of dimension g. Using a result of Peterzil and

Starchenko, after restricting to a suitable fundamental domain, the uniformizing map of

the universal family is definable in the o-minimal structure Ran, exp. Consequently, the

preimage of C under this map is a definable surface X .

Let C′ be the subset of C we want to prove to be finite. Then, each point P0 ∈ C′ correspond

to a point on X lying on a subvariety defined by equations with integer coefficients. We

then use a result by Habegger and Pila, which states that the number of points on X

lying on such subvarieties with coefficients bounded in absolute value by T is at most

≪ T ε, provided that the abelian logarithm of the generic point of C generates a field of

sufficiently large transcendence degree over the field generated by the period matrix.

We then use a result by Barroero and Capuano, based on an earlier result by Masser

[Mas88], to construct a linear combination of a specific basis of endomorphisms of Aπ(P0),

with coefficients bounded by a constant times a positive power of [Q(P0) : Q] and such

that P0 lies in the kernel of this linear combination. In order to do this, we use the bounds

for the canonical height developed in Section 2.6. Furthermore, since all Galois conju-

66



4.2. PRELIMINARIES

gates of P0 remain in C′, there are at least D0 points on X lying on subvarieties whose

coefficients are bounded in absolute value by some positive power of D0. Together with

the previous estimate, this implies that D0 is uniformly bounded. By Northcott’s theo-

rem, this establishes the claim of the theorem.

Remark 4.2. Before proceeding, we note that if S ⊆ Ag is not a special curve (as explained

in Section 4.3, we may always assume S ⊆ Ag), then the André-Oort conjecture for Ag
(proved by Tsimerman [Tsi18]) guarantees that only finitely many points s ∈ S(C) corre-

spond to CM fibers As , which in turn implies Theorem 4.1. Hence, one may assume that

S = π(C) is a Shimura curve, though this assumption will not be used in the rest of the

chapter.

Remark 4.3. Observe that the Zilber–Pink conjecture would imply Theorem 4.1 even when

C is contained in a translate of a proper flat subgroup scheme of A by a non-torsion

section. Unfortunately, the functional transcendence results used in this chapter only

allow us to prove the theorem in the form stated above.

We use Vinogradov’s ≪ notation: for real-valued functions f(T ) and g(T ), we write

f(T ) ≪ g(T ) if there exists a constant γ > 0 such that f(T ) ≤ γg(T ) for all sufficiently

large T . When not explicitly stated, the implied constant is either absolute or depends

only on S,A, g, C and other fixed data. We use subscripts to indicate any additional de-

pendence of the implied constant.

4.2 Preliminaries

For the basic results about abelian varieties we refer to Section 2.5.1.

4.2.1 Moduli spaces, universal families and their uniformizations

Let g, n ≥ 1 be positive integers and D = diag(d1, . . . , dg), with di positive integers such

that di divides di+1 for every i = 1, . . . , g − 1. We define Ag,D,n as the moduli space of

complex abelian abelian varieties of dimension g, polarization type D and with principal

level-n-structure. For each type D and n ≥ 3, the moduli space Ag,D,n is a fine moduli

space [MFK94, Theorem 7.9]. In other words, there is a universal family π : Ag,D,n →
Ag,D,n, which, like Ag,D,n, is defined over Q. For the rest of the chapter we will consider

Ag,D,n and Ag,D,n as irreducible quasi-projective varieties.

It is well-known (see for example Chapter 8 of [BL04]) that Aang,D,n, the analytification

of Ag,D,n, can be realized as a quotient of Hg by a suitable finite index subgroup ΓD,n of

Sp2g(Z), where

Hg :=
{
Z ∈ Matg(C) : Z = Zt, Im(Z) > 0

}
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and Sp2g(Z) :=
{
M ∈ Mat2g(Z) : M tJM = J

}
(here J :=

(
0 1g

−1g 0

)
) acts on Hg by

A B

C D

 · Z = (AZ +B)(CZ +D)−1.

Remark 4.4. We will show in Section 4.3 that we can always reduce the problem to study-

ing principally polarized abelian varieties. Moreover, the choice of the level structure is

not important for our proof of Theorem 4.1. So, for the rest of the chapter, we fix D = 1g
and n = 3 and omit those indices from the notation when they are clear from the context.

Note that Hg is an open subset, in the Euclidean topology, of

{
M ∈ Matg(C) : M = M t

}
∼= C

g(g+1)
2

and that we can see Hg as a semialgebraic subset of R2g2
, by identifying a complex num-

ber with its real and imaginary parts. Furthermore, the quotient map ub : Hg → Aang is

holomorphic.

Similarly, we have an holomorphic uniformization map for the universal family, given

by theta functions, u : Hg × Cg → Aang , such that the following diagram commutes

Hg × Cg Aang

Hg Aang

p1

u

π

ub

Now, we would like to find a subset of Hg × Cg over which u is invertible.

By [Igu72, Section V.4], there is a semialgebraic set Fg of Hg which can be used as a

fundamental domain for the action of Sp2g(Z) on Hg. If Γ is a finite index subgroup of

Sp2g(Z) and σ1 = 12g, σ2, . . . , σn is a complete set of representatives of its right cosets,

then

FΓ :=
n⋃
i=1

σi · Fg (4.1)

is called a Siegel fundamental domain for Γ and can be used as a fundamental domain for

the action of Γ on Hg.

For a fixed τ ∈ Hg we have a principally polarized abelian variety Aτ = Cg/(Zg +
τZg). In this case, let Lτ := {z ∈ Cg : z = u+ τv with u, v ∈ [0, 1)g} be the fundamental

parallelogram for the lattice Zg + τZg. Moreover, let Γ = ΓD,n as above and define

Fg := {(τ, z) ∈ Hg × Cg : τ ∈ FΓ, z ∈ Lτ} .

Then, the restriction of u to Fg is finite-to-one. Consider a curve C ⊆ Ag as in Theorem

4.1 and set

Z = u−1(C(C)) ∩ Fg. (4.2)
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Finally, let S ⊆ Ag be a smooth, irreducible, locally closed curve and let A = Ag ×Ag

S → S. Define the constant part (or Q(S)/Q-trace) of A → S as the largest abelian

subvariety A0 of the generic fiber Aη which can be defined over Q (see also [Lan83a,

Section VIII.3] for more details).

Let D be an open disc on C(C) and consider τ and z as holomorphic functions on D.

The following functional transcendence result is a consequence of Theorem 7.1 of [Dil21]

(which is in turn based on a result by Gao [Gao20]).

Lemma 4.5. Let S, A, C and D as above and let F = C(τ). Under the assumptions of Theorem

4.1, we have tr.deg.FF (z) = g on D.

Proof. By contradiction, assume that tr.deg.FF (z) < g. Then Theorem 7.1 of [Dil21] im-

plies the existence of a proper subvariety W of A, containing C and such that, over Q(S),

every irreducible component of Wη is a translate of an abelian subvariety of Aη by a point

in (Aη)tors +A0(Q). This means that, up to finite base change, C is contained in a translate

of a proper subgroup scheme by a point in A0(Q), contradicting the hypotheses on C in

Theorem 4.1.

4.2.2 Heights

Let h denote the logarithmic absolute Weil height on PN , as defined in Chapter 2 and,

if α is an algebraic number, define h(α) = h ([1 : α]). Define also the multiplicative Weil

height as H(P ) = exp(h(P )). More generally, if V is a projective variety and D is a

divisor, denote by hV,D a Weil height on V associated to D (see Section 2.4).

For an abelian varietyA defined over a number field and a divisorD, we also have the

Néron–Tate height ĥA,D, defined as in Theorem 2.32. We also denote by hF (A) the stable

Faltings height of A (see [Fal83]), assuming that A has semistable reduction everywhere.

This assumption can always be ensured by passing to a suitable field extension.

Finally, we will also need another definition of height (from [HP12, Section 7]), which

generalizes the height defined in Definition 3.8.

Definition 4.6. If d ∈ Z≥1 and α is a complex number, we define the d-height of α as

Hd(α) := min
{
H([a0 : . . . : ad]) : [a0 : . . . : ad] ∈ Pd(Q) s.t. a0 + a1α+ . . .+ adα

d = 0
}

where we use the convention min ∅ = +∞. For (α1, . . . , αN ) ∈ CN , we also define

Hd(α1, . . . , αN ) = max {Hd(αi)}.

Note that Hd(α1, . . . , αN ) is finite if and only if α1, . . . , αN are all algebraic numbers

of degree at most d.
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Lemma 4.7. For any α ∈ Q of degree at most d we have

Hd(α) ≤ 2dH(α)d and |α| ≤
√
d+ 1 ·Hd(α).

Proof. Let f(x) = a0 + a1x + . . . + anx
n ∈ Q[x] be a polynomial of degree n ≤ d such

that f(α) = 0 and let mα(x) ∈ Z[x] be the minimal polynomial of α (so its coefficients

are coprime). Since in the definition of Hd(α) we are considering the coefficients of f as

a point in a projective space, we may assume that the coefficients of f are integers with

gcd(a0, . . . , an) = 1.

For every p ∈ C[x] let M(p) denote the Mahler measure of p, as in [BG06, Section 1.6].

By [BG06, Proposition 1.6.6],

M(mα) = H(α)[Q(α):Q] ≤ H(α)d.

Moreover, [BG06, Lemma 1.6.7] gives

∥f∥∞ := max{|a0| , . . . , |an|} ≤
(
n⌊
n
2
⌋)M(f) ≤ 2nM(f) ≤ 2dM(f).

Since the coefficients of f are coprime integers, H([a0 : . . . : an]) = ∥f∥∞. Hence

Hd(α) = min {∥f∥∞ : f ∈ Z[x] with coprime coefficients s.t. deg(f) ≤ d and f(α) = 0}

≤ ∥mα∥∞ ≤ 2dM(mα) ≤ 2dH(α)d

which proves the first inequality.

For the second inequality, note first that [BG06, Proposition 1.6.6] implies |α| ≤ M(f)
for any f ∈ Z[x] such that f(α) = 0. Furthermore, by [BG06, Lemma 1.6.7], we also have

that M(f) ≤
√

deg(f) + 1 · ∥f∥∞. Taking the minimum over all polynomials f ∈ Z[x]
with coprime coefficients and deg(f) ≤ d such that f(α) = 0 then yields the desired

bound |α| ≤
√
d+ 1 ·Hd(α).

4.2.3 Complex Multiplication

In this section, we recall the basic definitions and key facts about complex multiplication

for abelian varieties defined over fields of characteristic 0, which will be used throughout

this chapter. For further details on this topic, we refer to [Lan83b, Shi98, Mil20].

Definition 4.8. A CM field K is a totally imaginary quadratic extension of a totally real

number field. That is, K has the form K = K0(
√
α), where K0 is a totally real field, i.e.,

a number field whose embeddings into C are all real, and α ∈ K0 satisfies the condition

that each embedding of K0 into C maps α to a negative real number.
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Definition 4.9. An abelian varietyA of dimension g is said to have Complex Multiplication

(CM) if its endomorphism algebra End0(A) contains a commutative semisimple subalge-

bra of degree 2g over Q. We say that A has CM by the CM field K (of degree 2g) if there

exists an embedding K ↪→ End0(A).

Note that a simple abelian varietyA has complex multiplication if and only if End0(A)
is a CM field of degree 2 dim(A). In general, an abelian variety has complex multiplica-

tion if and only if each of its simple factors up to isogeny has complex multiplication.

If A is a simple CM abelian variety of dimension g, then End0(A) ∼= K is a CM field

and there is a set Φ = {ϕ1, . . . , ϕg} of complex embeddings of K such that Φ ∪ Φ is the

set of all complex embeddings of K and TO(A) ∼=
∏g
i=1 Cϕi

, where Cϕi
is a 1-dimensional

C-vector space on which α ∈ K acts as ϕi(α). We call the pair (K,Φ) a CM-type of A. In

particular, by Proposition 3.13 of [Mil20], (K,Φ) is primitive, i.e. it is not induced by a

CM-type of a proper CM subfield of K.

4.2.4 O-minimality and definable sets

In this section we will use the properties and results about o-minimal structures intro-

duced in Section 3.3. For more details, we refer again to [vdD98] and [vdDM96].

For this chapter we will need a more general version of Proposition 3.11. For a family

Z ⊆ RM × RN = RM+N , a positive integer d and a positive real number T define

Z∼(d, T ) := {(y, z) ∈ Z : Hd(y) ≤ T}

where Hd(y) is the d-height given by Definition 4.6. Let also π1, π2 be the projections of

Z to the first M and last N coordinates, respectively.

Proposition 4.10 ([HP16], Corollary 7.2). Let Z ⊆ RM+N be a definable set. For every positive

integer d and every ε > 0 there exists a positive constant c = c(Z, d, ε) with the following

property. If T ≥ 1 and |π2(Z∼(d, T ))| > cT ε, then there exists a continuous definable function

δ : [0, 1] → Z such that:

1. the restriction δ|(0,1) is real analytic (since Ran, exp admits analytic cell decomposition);

2. the composition π1 ◦ δ : [0, 1] → RM is semi-algebraic and its restriction to (0, 1) is real

analytic;

3. the composition π2 ◦ δ : [0, 1] → RN is non-constant.

We conclude this section by showing that the set Z defined in (4.2) is definable in

Ran,exp.

From now on, we use the term “definable” to mean definable in Ran,exp. A complex

set or function is said to be definable if it is definable as a real object, considering its real
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and imaginary parts separately. We may assume that Ag is embedded in some projective

space. By Theorem 1.2 of [PS13], there is an open subset U of Hg ×Cg containing Fg such

that the restriction of the uniformizing map u toU is definable. Since Fg is a semialgebraic

subset of Hg × Cg, it follows that u is definable when restricted to Fg. Consequently, as C
is semi-algebraic, we conclude that Z is definable.

4.3 Reduction to the universal family of principally polarized

abelian varieties

In this section, we reduce to the case where A = Ag ×Ag S, with S ⊆ Ag a smooth,

irreducible, locally closed curve defined over Q. The results of this section are inspired

by Section 2 of [BC20].

The first result of this section allows us to perform finite base changes.

Lemma 4.11. Let C be as in Theorem 4.1. Let ℓ : S′ → S be a finite étale cover and A′ = A×SS
′.

Let also ρ : A′ → A be the projection map. Then, if the claim of Theorem 4.1 holds for all

irreducible components of ρ−1(C), then it holds for C.

Proof. By the proof of Lemma 2.1 of [BC20] we have that ρ is flat and finite. By [Har77,

Corollary III.9.6], we have that if X ⊆ A is an irreducible variety, then the dimension of

each irreducible component of ρ−1(X) is equal to dimX . Moreover, if X dominates S,

then every irreducible component of ρ−1(X) dominates S′. In particular, this shows that

the preimages of the flat subgroup schemes of A are flat subgroup schemes of A′ of the

same dimension. This implies that if C satisfies the hypotheses of Theorem 4.1, then the

same is true for each irreducible component of ρ−1(C). Finally, the preimages of any point

of C lying in a proper algebraic subgroup of a CM fiber As, where s ∈ S(C), are contained

in proper algebraic subgroups of fibers of A′, which are still CM, since for s′ ∈ S′(C) and

s ∈ S(C) such that ℓ(s′) = s, then As
∼= A′

s′ .

Next, let A and A′ be abelian schemes over the same curve S and let fη : A′
η → Aη be

an isogeny between the generic fibers defined over Q(S). Then, fη extends to an isogeny

f : A′ → A between the abelian schemes (see the proof of Lemma 2.2 of [BC20]).

Lemma 4.12. Let A,A′, fη and f as above and C as in Theorem 4.1. Then, if the claim of Theorem

4.1 holds for all irreducible components of f−1(C), then it holds for C.

Proof. For every s ∈ S, the map fs : A′
s → As is an isogeny. In particular, the im-

ages and preimages of algebraic subgroups under fs remain algebraic subgroups, and

dimensions are preserved. Moreover, since isogenous abelian varieties have isomorphic

endomorphism algebras, it follows that As is CM if and only if A′
s is CM. Now, consider
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the preimage under f of any intersection of C with the union of the proper algebraic sub-

groups of the CM fibers of A. Since this preimage lies in a proper algebraic subgroup of

a CM fiber of A′, and by assumption the claim of Theorem 4.1 holds for all irreducible

components of f−1(C), we conclude that the set of such points is finite. This proves the

result.

Now, as S is irreducible, smooth and quasi-projective, by [GW23, Theorem 27.291],

we can take a relatively ample line bundle L on A → S. This line bundle induces a

polarization on A → S of type D = (d1, . . . , dg). By [BL04, Proposition 4.1.2], the generic

fiber Aη is isogenous to a principally polarized abelian variety A′, defined over a finite

extension of Q(S). If we write this finite extension as Q(S′), with S′ a smooth irreducible

curve covering S, we can use Lemma 4.11 and assume that S′ = S. By Proposition

7.3.6 and Theorem 7.4.5 of [BLR90], A′ extends to an abelian scheme A′ → S. Since S

is smooth, using Lemma 4.12, we can then assume that the polarization induced by L is

principal.

Then, by [Ge24, Lemma 2.2], there exists a finite étale cover ℓ : S′ → S such that

A′ := A ×S S
′ → S′ has level-3-structure.

Hence, since Ag = Ag,1,3 is a fine moduli space, there is a unique morphism φ : S′ →
Ag such that A′ is the pull-back of the universal family Ag → Ag along φ. Thus, we have

a cartesian diagram:

A′ Ag A′′

S′ Ag S′′

p′ p′′

φ

Let S′′ = φ(S′) ⊆ Ag. Since S′ is an irreducible curve, φ : S′ → S′′ is either constant or

finite. However, φ cannot be constant, as A → S would be isotrivial. Thus, φ is finite. Up

to removing finitely many points from S′, we can also assume that S′′ is smooth, which

implies that φ is flat.

Note that

A′ ∼= Ag ×Ag S
′ ∼= (Ag ×Ag S

′′) ×S′′ S′ = A′′ ×S′′ S′

which gives a morphism p : A′ → A′′.

Lemma 4.13. Let A′′ → S′′ as above and C′ ⊆ A′ be a curve satisfying the hypotheses of Theorem

4.1. Then, if the claim of Theorem 4.1 holds for C′′ = p(C′), then it holds for C′.

Proof. We start by proving that the hypotheses of Theorem 4.1 hold for C′′. Firstly, C′′

cannot be contained in a fixed fiber A′′
s′′ , otherwise

C′ ⊆ p−1(C′′) ⊆ Ag,s′′ ×
{
s′ ∈ S′ : φ(s′) = s′′} .
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Since C′ is irreducible and φ is finite, C′ ⊆ Ag,s′′ × {s′} = A′
s′ , for some s′ ∈ S′ such

that φ(s′) = s′′, contradicting the assumptions on C′. Furthermore, since φ is flat and

finite, p is flat and finite as well. So, preimages by p of flat subgroup schemes of A′′ are

flat subgroup schemes of A′ of the same dimension, as in the proof of Lemma 4.11. This

proves that C′′ is not contained in a proper flat subgroup scheme of A′′.

For a fiber A′
s′

∼= Ag,φ(s′), we have that p(A′
s′) = A′′

φ(s′) = Ag,φ(s′) ∼= A′
s′ . Also, images

by p of subgroups of A′
s′ are subgroups of A′′

φ(s′) of the same dimension. Therefore, the

images of the intersections of C′ with the union of the proper algebraic subgroups of the

CM fibers are contained in the intersection of C′′ with the union of the proper algebraic

subgroups of the CM fibers of A′′, which is a finite set by assumption. The conclusion

follows by using the fact that p is finite.

Thus, for the remainder of the chapter, we assume that S ⊆ Ag is a smooth, irre-

ducible, locally closed curve defined over Q, and A = Ag ×Ag S.

4.4 Matrix bounds for endomorphisms of abelian varieties

Let A be an abelian variety of dimension g defined over C, so that A ∼= Cg/Λ for some

lattice Λ. Fix a polarization L of type D = diag(d1, . . . , dg) and let d = d1 · . . . · dg be its

degree. Fix also a symplectic basis λ1, . . . , λ2g of Λ and a basis e1, . . . , eg of Cg such that

the period matrix of A with respect to these bases is (τ,D), where τ ∈ Hg (see [BL04,

Section 8.1]).

As in Section 4.2.1, denote by Fg the fundamental domain for the action of Sp2g(Z)
on Hg, as described in [Igu72, Section V.4]. Fix a finite index subgroup Γ of Sp2g(Z) and

denote by FΓ the Siegel fundamental domain for Γ. Recall that FΓ was defined in (4.1) as

FΓ =
n⋃
i=1

σi · Fg, where σ1 = 12g, σ2, . . . , σn ∈ Sp2g(Z) is a complete set of representatives

for the right cosets of Γ in Sp2g(Z).

In order to state and prove the result of this section, we introduce some matrix norms.

Definition 4.14. For a matrix M = (mi,j)1≤i,j≤n ∈ Matn(C) we define the following

norms:

• ∥M∥∞ := max
i,j

|mi,j |;

• (Frobenius norm) ∥M∥F :=
√

tr
(
M

t
M
)

=
√

n∑
i,j=1

|mi,j |2;

• (Spectral norm) ∥M∥2 :=
√
ρ
(
M

t
M
)

, where ρ(M) denotes the spectral radius of

M , i.e. the maximum of the absolute values of the eigenvalues of M .

Recall that the polarization L defines a Rosati involution † (see Equation (2.3)). Through-

out, rational representations are taken with respect to the symplectic basis fixed above.
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As established in [BL04, Theorem 5.1.8],

tr(ρr(f †f)) > 0

for any nonzero f ∈ End0(A) := End(A) ⊗ Q. Hence, ∥ρr(f)∥∞ and
√

tr (ρr(f †f)) are

two equivalent norms on the finite dimensional Q-vector space End0(A). Thus, there

exist two constants c1, c2 > 0 such that

c1 ·
√

tr (ρr(f †f)) ≤ ∥ρr(f)∥∞ ≤ c2 ·
√

tr (ρr(f †f))

for every f ∈ End0(A). The aim of this section is to make the constants c1, c2 effective by

proving the following result.

Proposition 4.15. Let A be an abelian variety of dimension g defined over C. Fix a polarization

L and choose bases of Λ and Cg as above. Consider the Rosati involution † on End0(A) defined

by L and assume that τ ∈ FΓ. Then, for every f ∈ End0(A), we have

1
2g · c(A) ·

√
tr (ρr(f †f)) ≤ ∥ρr(f)∥∞ ≤ c(A) ·

√
tr (ρr(f †f))

where c(A) = δ(g,FΓ) · ∥D∥2g+2
∞
d

· max {1, ∥Im(Zτ )∥∞}2g3+3g2+2g+1, δ(g,FΓ) is an effective

positive constant depending only on g and the choice of the representatives of the right cosets of Γ
in Sp2g(Z) and Zτ ∈ Fg is in the same Sp2g(Z)-orbit as τ .

Let H be the Hermitian form associated with the polarization L, and let E = Im(H)
be the associated alternating form, which satisfies E(Λ × Λ) ⊆ Z. According to [BL04,

Lemma 2.1.7], the form H can be expressed as:

H(u, v) = E(iu, v) + iE(u, v)

for every u, v ∈ Cg, with S(u, v) = E(iu, v) = Re(H(u, v)) positive definite. Let † be the

Rosati involution defined by the polarization L. By Proposition 5.1.1 of [BL04], we have

H(ρa(f)(u), v) = H(u, ρa(f †)(v))

for any f ∈ End0(A) and for all u, v ∈ Cg. As in [MW94], evaluating this expression at

λ1, . . . , λ2g and taking real and imaginary parts yields

ρr(f †) = S−1 · ρr(f)t · S = E−1 · ρr(f)t · E

where, with a slight abuse of notation, we denote by S and E the matrices representing

the bilinear forms S(u, v) and E(u, v) with respect to the basis λ1, . . . , λ2g of Λ. If we
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denote R = ρr(f), then

tr
(
ρr(f †f)

)
= tr

(
S−1Rt SR

)
.

Since S is positive definite, there is a unique upper triangular matrix U ∈ Mat2g(R) with

positive diagonal entries such that S = U tU . Substituting this decomposition, we have:

S−1Rt SR = U−1(U−1)tRt U tUR

= U−1 ·
(
(U−1)tRt U t

)
·
(
URU−1

)
· U

and the invariance of the trace under conjugation implies:

tr
(
ρr(f †f)

)
= tr

(
QtQ

)
= ∥Q∥2

F

where Q = URU−1.

Furthermore, by the triangle inequality, for any M1,M2 ∈ Matn(C) we have

∥M1M2∥∞ ≤ n ∥M1∥∞ · ∥M2∥∞ . (4.3)

Therefore, since R = U−1QU , we get

∥R∥∞ =
∥∥∥U−1QU

∥∥∥
∞

≤
(
(2g)2 ·

∥∥∥U−1
∥∥∥

∞
· ∥U∥∞

)
· ∥Q∥∞

∥Q∥∞ =
∥∥∥URU−1

∥∥∥
∞

≤
(
(2g)2 ·

∥∥∥U−1
∥∥∥

∞
· ∥U∥∞

)
· ∥R∥∞ .

We now prove a few general results about matrices.

Lemma 4.16. If M ∈ Matn(R) is positive definite and T ∈ Matn(R) is an upper triangular

matrix with positive diagonal entries such that M = T t · T , then ∥T∥∞ ≤
√
n ∥M∥∞.

Proof. We clearly have ∥M∥2 = ∥T∥2
2. Moreover, ∥N∥∞ ≤ ∥N∥2 ≤ n ∥N∥∞ for every

N ∈ Matn(R) [GVL13, Eq. (2.3.8)]. Thus, ∥T∥∞ ≤ ∥T∥2 =
√

∥M∥2 ≤
√
n ∥M∥∞.

The following result is well known but we include it for completeness.

Lemma 4.17. For any matrix M ∈ Matn(C), we have |det(M)| ≤ nn/2 · ∥M∥n∞.

Proof. This follows easily from Hadamard’s inequality [Had93].

Lemma 4.18. Let M ∈ Matn(C) be an invertible matrix. Then

∥∥∥M−1
∥∥∥

∞
≤ nn/2

|det(M)| · ∥M∥n−1
∞ .

Proof. The case n = 1 is trivial, so assume n ≥ 2. Recall that M−1 = 1
det(M)C

t, where C

is the cofactor matrix (see also the proof of Proposition 2.18 for details). By Lemma 4.17,
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∥C∥∞ ≤ (n− 1)
n−1

2 · ∥M∥n−1
∞ , which implies

∥∥∥M−1
∥∥∥

∞
= 1

|det(M)| · ∥C∥∞ ≤ (n− 1)
n−1

2

|det(M)| · ∥M∥n−1
∞ ≤ nn/2

|det(M)| · ∥M∥n−1
∞ .

Next, we compute S(u, v). Write τ = X + iY , with X = (xj,k)1≤j,k≤g and Y =
(yj,k)1≤j,k≤g real matrices. Recall that for the bases (λ1, . . . , λ2g) and (e1, . . . , eg) that we

fixed at the start we have

λj =


g∑

k=1
xj,k · ek + yj,k · iek j = 1, . . . g

dj−gej−g j = g + 1, . . . , 2g
.

So, by doing the computations with the basis (e1, . . . , eg, ie1, . . . , ieg) of W = Λ ⊗ R, the

multiplication by i on W is represented in the basis (λ1, . . . , λ2g) by the matrix

X D
Y 0

−1 0 −1g
1g 0

X D
Y 0

 =

 Y −1X Y −1D
−D−1Y − D−1XY −1X −D−1XY −1D

 .
Hence, the matrix representing S(u, v) = E(iu, v) in the basis (λ1, . . . , λ2g) is given by

S =

 Y −1X Y −1D
−D−1Y − D−1XY −1X −D−1XY −1D

t 0 D
−D 0


=

XY −1X + Y XY −1D
DY −1X DY −1D

 .
Furthermore, note that by [AM05, Ex. 5.30]

det(S) = det(DY −1D) det
(
(XY −1X + Y ) − (XY −1D)(DY −1D)−1(DY −1X)

)
= det(D)2 · det(Y −1) · det(Y ) = det(D)2 = d2

which also implies that det(U) = d, since S = U tU and U has positive diagonal entries.

Then, by Lemma 4.16, we have that ∥U∥∞ ≤
√

2g ∥S∥∞ and using Lemma 4.18 we

get ∥∥∥U−1
∥∥∥

∞
≤ (2g)g

d
· ∥U∥2g−1

∞

≤ (2g)g

d
· (2gmax {1, ∥S∥∞})g = (2g)2g

d
· max {1, ∥S∥∞}g .

(4.4)

Finally, in preparation for the proof of Proposition 4.15, we establish some bounds for

matrices in FΓ. To this end, we first recall a few classical properties of the Siegel funda-

mental domain Fg.
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Lemma 4.19. Let τ = X + iY ∈ Fg. Then, we have:

(a) ∥X∥∞ ≤ 1
2 ;

(b) det(Y ) ≥
(√

3
2

)g2

;

(c) |det(Cτ +D)| ≥ 1, for every
(
A B
C D

)
∈ Sp2g(Z).

Proof. Parts (a) and (c) are true by definition of Fg (see [Igu72, p. 194]). Moreover, by

Lemmas V.13 and V.15 of [Igu72]

det(Y ) ≥
(3

4

) g(g−1)
2

· (y1,1)g ≥
(3

4

) g(g−1)
2

·
(√

3
2

)g
=
(√

3
2

)g2

which proves part (b).

Proposition 4.20. Let τ = X + iY ∈ FΓ and let Zτ ∈ Fg be in the same Sp2g(Z)-orbit as τ .

Then, there are effective positive constants δ1, δ2, δ3, δ4, depending only on g and the choices of

the representatives for the right cosets of Γ in Sp2g(Z), such that:

(a) ∥Y ∥∞ ≤ δ1 · max{1, ∥Im(Zτ )∥∞}2g−1;

(b) ∥X∥∞ ≤ δ2 · max{1, ∥Im(Zτ )∥∞}g;

(c) det(Y ) ≥ δ3

max{1, ∥Im(Zτ )∥∞}2g ;

(d)
∥∥Y −1∥∥

∞ ≤ δ4 · max{1, ∥Im(Zτ )∥∞}2g2−g+1.

Proof. Let τ and Zτ as above and take σ =
(
A B
C D

)
∈ Sp2g(Z) such that τ = σ ·Zτ . The def-

inition of FΓ (see (4.1)) implies that we can take σ to be one of the chosen representatives

σ1, . . . , σn for the right cosets of Γ in Sp2g(Z) and thus all the constants that appear will

depend on the choice of such representatives.

(a) It is well-known that

Y = Im(τ) = Im(σ · Zτ ) =
[
(CZτ +D)t

]−1
Im(Zτ )

(
CZτ +D

)−1
(4.5)

(see for example [Igu72, Section I.6]). So (4.3) implies that

∥Y ∥∞ ≤ g2 ·
∥∥∥(CZτ +D)−1

∥∥∥2

∞
· ∥Im(Zτ )∥∞

since ∥ · ∥∞ is invariant under transposition and complex conjugation. Then, as

Zτ ∈ Fg, Lemma 4.18 and Lemma 4.19(c) imply

∥∥∥(CZτ +D)−1
∥∥∥

∞
≤ gg/2

|det(CZτ +D)| · ∥CZτ +D∥g−1
∞ ≤ gg/2 · ∥CZτ +D∥g−1

∞ .
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Moreover,

∥CZτ +D∥∞ ≤ g ∥C∥∞ ∥Zτ∥∞ + ∥D∥∞

≤ 5g
2 · max{∥C∥∞ , ∥D∥∞} · max{1, ∥Im(Zτ )∥∞}

(4.6)

since Lemma 4.19(a) implies

∥Zτ∥∞ + 1 ≤ ∥Re(Zτ )∥∞ + ∥Im(Zτ )∥∞ + 1

≤ 3
2 + ∥Im(Zτ )∥∞ ≤ 5

2 · max{1, ∥Im(Zτ )∥∞} .
(4.7)

Combining the inequalities above yields

∥Y ∥∞ ≤ g2 ·
∥∥∥(CZτ +D)−1

∥∥∥2

∞
· ∥Im(Zτ )∥∞

≤ gg+2 · ∥CZτ +D∥2g−2
∞ · ∥Im(Zτ )∥∞

≤
(5

2

)2g−2
· g3g · max{∥C∥∞ , ∥D∥∞}2g−2 · max{1, ∥Im(Zτ )∥∞}2g−1 .

Hence we can take δ1 =
(

5
2

)2g−2
· g3g · max

σ∈{σ1,...,σn}
{max{∥C∥∞ , ∥D∥∞}}2g−2.

(b) We have that

∥X∥∞ = ∥Re(σ · Zτ )∥∞ ≤ ∥σ · Zτ∥∞ =
∥∥∥(AZτ +B)(CZτ +D)−1

∥∥∥
∞

≤ g · ∥AZτ +B∥∞ ·
∥∥∥(CZτ +D)−1

∥∥∥
∞

≤ g · (g ∥A∥∞ ∥Zτ∥∞ + ∥B∥∞) ·
∥∥∥(CZτ +D)−1

∥∥∥
∞
.

From the computations above we also have that

∥∥∥(CZτ +D)−1
∥∥∥

∞
≤ gg/2 · ∥CZτ +D∥g−1

∞

≤
(5

2

)g−1
g

3
2g−1 max{∥C∥∞ , ∥D∥∞}g−1 max{1, ∥Im(Zτ )∥∞}g−1 .

This implies that

∥X∥∞ ≤
(5

2

)g
g

3
2g+1 ∥σ∥g∞ max{1, ∥Im(Zτ )∥∞}g .

Hence, we can take δ2 =
(

5
2

)g
g

3
2g+1 max

σ∈{σ1,...,σn}
{∥σ∥∞}g.

(c) Taking the determinant of the first and last part of Equation (4.5) yields

det(Y ) = det(CZτ +D)−1 · det(Im(Zτ )) · det(CZτ +D)−1 = det(Im(Zτ ))
|det(CZτ +D)|2

.
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Furthermore, it follows from Lemma 4.17 and Equation (4.6) that

|det(CZτ +D)| ≤ gg/2 · ∥CZτ +D∥g∞

≤
(5

2

)g
· g3g/2 · max{∥C∥∞ , ∥D∥∞}g · max{1, ∥Im(Zτ )∥∞}g .

Therefore, using Lemma 4.19(b), we get

det(Y ) = det(Im(Zτ ))
|det(CZτ +D)|2

≥

(√
3

2

)g2

( 5
2 )2g ·g3g ·max{∥C∥∞,∥D∥∞}2g

max{1, ∥Im(Zτ )∥∞}2g

so that we can take δ3 =
(√

3
2

)g2 (
2
5

)2g
· g−3g · max

σ∈{σ1,...,σn}
{max{∥C∥∞ , ∥D∥∞}}−2g.

(d) Applying Lemma 4.18 and parts (a) and (c) yields

∥∥∥Y −1
∥∥∥

∞
≤ gg/2

|det(Y )| · ∥Y ∥g−1
∞ ≤ gg/2 · γ

g−1
1
γ3

· max{1, ∥Im(Zτ )∥∞}2g2−g+1 .

Thus, we can take δ4 = gg/2 · δ
g−1
1
δ3

.

We are now ready to prove the main result of this section.

Proof of Proposition 4.15. We already proved that

∥R∥∞ ≤
(
(2g)2 ·

∥∥∥U−1
∥∥∥

∞
· ∥U∥∞

)
·∥Q∥∞ , ∥Q∥∞ ≤

(
(2g)2 ·

∥∥∥U−1
∥∥∥

∞
· ∥U∥∞

)
·∥R∥∞ .

Now, by Equation (4.4), we have that

(2g)2 ·
∥∥∥U−1

∥∥∥
∞

· ∥U∥∞ ≤ (2g)2 · (2g)2g

d
· max {1, ∥S∥∞}g · (2g)1/2 · ∥S∥1/2

∞

≤ (2g)2g+3

d
· max {1, ∥S∥∞}g+1 .

Let τ = X + iY . Then, using (4.3), we get

∥S∥∞ = max
{∥∥∥XY −1X + Y

∥∥∥
∞
,
∥∥∥XY −1D

∥∥∥
∞
,
∥∥∥DY −1X

∥∥∥
∞
,
∥∥∥DY −1D

∥∥∥
∞

}
≤ max

{
∥Y ∥∞ + g2 ∥X∥2

∞

∥∥∥Y −1
∥∥∥

∞
, g2 ∥X∥∞

∥∥∥Y −1
∥∥∥

∞
∥D∥∞ , g2 ∥D∥2

∞

∥∥∥Y −1
∥∥∥

∞

}
.

Moreover, if τ ∈ FΓ, let Zτ ∈ Fg be in the same Sp2g(Z)-orbit as τ , as before. Then, by

Proposition 4.20, we also obtain:

∥Y ∥∞ + g2 ∥X∥2
∞

∥∥∥Y −1
∥∥∥

∞
≤ 2g2δ2

2δ4 · max{1, ∥Im(Zτ )∥∞}2g2+g+1 ,
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g2 ∥X∥∞

∥∥∥Y −1
∥∥∥

∞
∥D∥∞ ≤ g2δ2δ4 ∥D∥∞ · max{1, ∥Im(Zτ )∥∞}2g2+1 ,

g2 ∥D∥2
∞

∥∥∥Y −1
∥∥∥

∞
≤ g2δ4 ∥D∥2

∞ · max{1, ∥Im(Zτ )∥∞}2g2−g+1 .

So, we get

∥S∥∞ ≤ max
{

∥Y ∥∞ + g2 ∥X∥2
∞

∥∥∥Y −1
∥∥∥

∞
, g2 ∥X∥∞

∥∥∥Y −1
∥∥∥

∞
∥D∥∞ , g2 ∥D∥2

∞

∥∥∥Y −1
∥∥∥

∞

}
≤ 2g2δ2

2δ4 ∥D∥2
∞ · max{1, ∥Im(Zτ )∥∞}2g2+g+1 .

Thus,

(2g)2 ·
∥∥∥U−1

∥∥∥
∞

· ∥U∥∞ ≤ (2g)2g+3

d
· max {1, ∥S∥∞}g+1 ≤ c(A)

where

c(A) = 22g+4 · g2g+5 · δ2
2δ4 · ∥D∥2g+2

∞
d

· max {1, ∥Im(Zτ )∥∞}2g3+3g2+2g+1 .

Note that δ = 22g+4 · g2g+5 · δ2
2δ4 is an effective positive constant that depends only on g

and the choice of the representatives for the right cosets of Γ in Sp2g(Z).

Therefore, we have that

∥R∥∞ ≤ c(A) · ∥Q∥∞ ≤ c(A) · ∥Q∥F

1
2g ∥Q∥F ≤ ∥Q∥∞ ≤ c(A) · ∥R∥∞ .

Recalling that R = ρr(f) and ∥Q∥F =
√

tr (ρr(f †f)) concludes the proof.

Remark 4.21. If Γ = Sp2g(Z) (so that FΓ = Fg and Zτ = τ ), one can obtain a better value

for the constant c(A), namely

c(A) = 24g+5 · gg2+3g+3 ·
(

2
√

3
3

)g2(g+1)

· ∥D∥2g+2
∞
d

· max {1, ∥Im(τ)∥∞}g(g+1) .

The argument is the same as in the proof above, but here one may use the sharper bounds

specific to Fg given by Lemma 4.19 instead of Proposition 4.20.

4.5 The main estimate

For every T ≥ 1 we define the set

Z(T ) =
{

(τ, z) ∈ Z : ∃M ∈ Matg(C) \ {0} s.t.

Mz ∈ Zg + τZg, H2g(τ), H2g(M) ≤ T and det(Im(τ)) ≥ 1
T

}
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where Z is the set defined in (4.2) and H2g is the height defined in Definition 4.6.

We want to prove the following upper bound for the cardinality of Z(T ).

Proposition 4.22. Under the hypotheses of Theorem 4.1, for all ε > 0, we have #Z(T ) ≪ε T
ε,

for all T ≥ 1.

In order to prove this, consider the definable set W whose elements are tuples of the

form

(α1,1, . . . , αg,g,β1,1, . . . , βg,g, µ1,1, . . . , µ1,g, µ2,1, . . . , µ2,g,

x1,1, . . . , xg,g, y1,1, . . . , yg,g, u1, . . . , ug, v1, . . . , vg)

in R4g2+2g × R2g, satisfying the following relations:

M ̸= 0, (τ, z) ∈ Z, Mz = µ1 + τµ2

where

M = (αi,j + iβi,j)i,j=1,...,g , µ1 = (µ1,1, . . . , µ1,g)t , µ2 = (µ2,1, . . . , µ2,g)t ,

τ = (xi,j + iyi,j)i,j=1,...,g , z = (z1, . . . , zg)t = (u1 + iv1, . . . , ug + ivg)t

and i is the imaginary unit. In particular, for T ≥ 1, let

W∼(2g, T ) := {(α1,1, . . . , vg) ∈ W : H2g(α1,1, . . . , yg,g) ≤ T} .

Recall that H2g(α1,1, . . . , yg,g) is finite if and only if α1,1, . . . , yg,g are all algebraic numbers

of degree at most 2g.

Now, let π1, π2 be the projections on the first 4g2 + 2g and the last 2g coordinates,

respectively.

Lemma 4.23. Under the hypotheses of Theorem 4.1, for every ε > 0, we have

#π2 (W∼(2g, T )) ≪ε T
ε

for all T ≥ 1.

Proof. Consider an arbitrary ε > 0 and assume that for some T0 ≥ 1, #π2 (W∼(2g, T0)) >
cT ε0 , where c = c(W, 2g, ε) is the constant given by Proposition 4.10.

Then, by Proposition 4.10, there exists a continuous definable function δ : [0, 1] → W

such that δ1 = π1 ◦ δ : [0, 1] → R4g2+2g is semi-algebraic and δ2 = π2 ◦ δ : [0, 1] → R2g

is non-constant. Hence, there exists an infinite connected J ⊆ [0, 1] such that δ1(J) is

contained in an algebraic curve and δ2(J) has positive dimension.
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Let M, τ, µ1, µ2, z = (z1, . . . , zg)t be as above and consider the coordinates

α1,1, . . . , αg,g,β1,1, . . . , βg,g, µ1,1, . . . , µ1,g, µ2,1, . . . , µ2,g,

x1,1, . . . , xg,g, y1,1, . . . , yg,g, u1, . . . , ug, v1, . . . , vg

as functions on J .

Note that τ cannot be constant on J , otherwise there would be infinitely many points

on C (since δ2(J) has positive dimension) that lie on the same fiber, which contradicts the

assumption that C is not contained in any fiber.

Moreover, on J , the functions α1,1, . . . , yg,g generate a field of transcendence degree

at most 1 over C, because they are functions on a curve. Therefore, on J , C(τ) is a field of

transcendence degree 1 over C and α1,1, . . . , µ2,g ∈ C(τ). SinceM ̸= 0 andMz = µ1+τµ2,

it follows that z1, . . . , zg are linearly dependent over C(τ). In particular, z1, . . . , zg are

algebraically dependent over F = C (τ) on J .

Now, consider the set W = (τ, z)(J) ⊆ Z . As the restriction of δ to (0, 1) is real

analytic, we can view τ and z as holomorphic functions on u(W) ⊆ C(C). Then, τ and z

satisfy an algebraic relation on u(W) which can be analytically continued to an open disc

in C(C).

Therefore, we have tr.deg.FF (z) < g on an open disc in C(C), contradicting Lemma

4.5 and thus proving the proposition.

Lemma 4.24. There exists a positive constant c′ = c′(Z) such that for all z ∈ Cg and for all

T ≥ 1, there are at most c′ elements τ ∈ Hg such that (τ, z) ∈ Z(T ).

Proof. Let

π̃ : Z −→ Cg

(τ, z) 7−→ z

Fix z0 ∈ Cg. By o-minimality, if π̃−1(z0) has dimension 0, then Proposition 3.10 implies

that its cardinality is uniformly bounded by a constant depending only on Z . Therefore,

it suffices to show that for any T ≥ 1, if z0 ∈ π̃(Z(T )), then π̃−1(z0) has dimension 0.

Now suppose that it has positive dimension, and let τ0 ∈ Hg be such that (τ0, z0) ∈
Z(T ). Then z0 and τ0 are algebraically dependent over C, and this relation extends to the

whole π̃(z0), hence to an open disc in C(C). This contradicts Lemma 4.5.

Proof of Proposition 4.22. If (τ, z) ∈ Z(T ), then there exists a matrix M ∈ Matg(Q) satisfy-

ing H2g(M) ≤ T , and vectors µ1, µ2 ∈ Zg such that

Mz = µ1 + τµ2.

If we write M = (mi,j)1≤i,j≤g and τ = (τi,j)1≤i,j≤g, then, for every i, j = 1, . . . , g, we can
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use Lemma 4.7 and deduce

|mi,j | ≤
√

2g + 1H2g(M) ≪ T, |τi,j | ≤
√

2g + 1H2g(τ) ≪ T.

Furthermore, since z = (z1, . . . , zg) ∈ Lτ , there exist u, v ∈ [0, 1)g such that z = u + τv.

Thus, for each i = 1, . . . , g, we get

|zi| =

∣∣∣∣∣∣ui +
g∑
j=1

τi,jvj

∣∣∣∣∣∣ ≤ 1 +
g∑
j=1

|τi,j | ≪ T.

As a consequence, for every i = 1, . . . , g we have∣∣∣∣∣∣
g∑
j=1

mi,jzj

∣∣∣∣∣∣ ≤
g∑
j=1

|mi,j | |zj | ≪ T 2. (4.8)

Since Mz = µ1 + τµ2, we have Im(τ)µ2 = Im(Mz) and thus

∥µ2∥∞ =
∥∥∥Im(τ)−1 · Im(Mz)

∥∥∥
∞

≤ g
∥∥∥Im(τ)−1

∥∥∥
∞

· ∥Im(Mz)∥∞

and, by Lemma 4.18, we get
∥∥Im(τ)−1∥∥

∞ ≤ gg/2

det(Im(τ)) ∥Im(τ)∥g−1
∞ ≤ gg/2 ·T · ∥τ∥g−1

∞ ≪ T g.

Hence, using (4.8), we obtain

∥µ2∥∞ ≤ g
∥∥∥Im(τ)−1

∥∥∥
∞

· ∥Im(Mz)∥∞ ≪ T g · ∥Mz∥∞ ≪ T g+2.

Moreover, we have µ1 = Mz − τµ2, so that

∥µ1∥∞ ≤ ∥Mz∥∞ + ∥τµ2∥∞ ≤ ∥Mz∥∞ + g ∥τ∥∞ · ∥µ2∥∞ ≪ T 2 + T · T g+2 ≪ T g+3.

This allows us to deduce that

(Re(M), Im(M), µ1, µ2,Re(τ), Im(τ),Re(z), Im(z)) ∈ W∼(2g, νT g+3)

for some positive constant ν. Then, by Lemma 4.24, each element of π2(W∼(2g, νT g+3))
corresponds to at most c′ distinct elements of Z(T ). Finally, the proof follows from

Lemma 4.23.

4.6 A height inequality

The aim of this section is to give a bound on the canonical height of the points P ∈ C(Q)
in terms of the Faltings height hF (Aπ(P )) of the corresponding fiber. In order to do that

we recall the setting of Theorem 4.1 and the reductions made in Section 4.3, and also
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define some height functions that will be used to prove this bound.

Let S ⊆ Ag = Ag,1,3 be a smooth, irreducible, locally closed curve defined over Q,

let A = Ag ×Ag S, with π : A → S being the structural morphism, and let C ⊆ A be an

irreducible curve as in Theorem 4.1. Recall that A has a level-3-structure and that there is

a principal polarization λ : A → Â, where Â denotes the dual abelian scheme of A.

By [GW23, Proposition 27.284], the pullback of the Poincaré bundle P via the mor-

phism (idA, λ) is relatively ample. Thus, the line bundle

L = [(idA, λ)∗P ⊗ [−1]∗A(idA, λ)∗P]⊗3

is relatively very ample (see [GW23, Theorem 27.279]), symmetric and ΦL = 12λ. This

line bundle gives an embedding A ↪→ PnS ∼= PnQ × S. Moreover, for every fiber As of

A → S, the induced closed immersion As → PnQ comes from the restriction Ls = L|As .

The minimal compactification Ag,1,3 of Ag,1,3 can be realized as a closed subvariety of

some projective space PmQ and we define M = OPm(1)|Ag,1,3
. Thus, we obtain an embed-

ding Ag,1,3 ↪→ PmQ and we denote by S the Zariski closure of S in Ag,1,3 ⊆ PmQ .

We then denote by A the Zariski closure of A inside PnQ × S ⊆ PnQ × PmQ and let

L = O(1, 1)|A = L ⊗ π∗(M|S
)
. Using the properties of the Weil height (e.g. Theorem 2.22

or [HS13, Theorem B.3.6]), we define the naive height on A(Q) as

hA,L(P ) = hAπ(P ),Lπ(P )(P ) + hS,M|
S
(π(P )).

Moreover, as L is symmetric, we can also define a fiberwise canonical height ĥAπ(P ),Lπ(P )(P )
as in Theorem 2.29.

Furthermore, recall that the coarse moduli space Ag,1 of principally polarized abelian

varieties of dimension g is a quasi-projective variety. More precisely, its minimal com-

pactification Ag,1 can be realized as a closed subvariety of some projective space PℓQ.

Let L = OPℓ(1)|Ag,1
. Then, by [FW12, Section II.3], L has an Hermitian metric on

Ag,1 with logarithmic singularities along Ag,1 \ Ag,1. Hence, we can define two height

functions: hL on Ag,1 using the metric cited just now; and h̃L on Ag,1 given by the Hermi-

tian metric which at the archimedean places is the standard Fubini–Study metric coming

from the embedding of Ag,1 into PℓQ and at the non-archimedean places is the usual met-

ric. Note that h̃L differs from a fixed Weil height hAg,1,L
by a bounded function on Pℓ(Q)

(see [BG06, Remark 2.8.3]).

From this point forward, ξ1, ξ2, . . . will be positive constants depending only on g, S,

A, C and the choices of the various Weil heights, unless otherwise specified.

Proposition 4.25. There exist positive constants ξ1, ξ2 such that

ĥAπ(P ),Lπ(P )(P ) ≤ ξ1hF (Aπ(P )) + ξ2
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for every P ∈ C(Q).

Proof. By [FW12, Theorem II.3.1] there exist positive constants ξ3, ξ4 depending only on

g such that

|hL ([A]) − ξ3 · hF (A)| ≤ ξ4

for every principally polarized A/Q of dimension g. Here, we denote by [A] the isomor-

phism class of A in Ag,1. By [FW12, Lemma II.1.2, last displayed equation], there are

positive constants ξ5, ξ6, depending only on g, such that

∣∣∣hL ([A]) − h̃L ([A])
∣∣∣ ≤ ξ5 + ξ6 log max

{
1, h̃L ([A])

}
for each [A] ∈ Ag,1. In particular, this means that h̃L ([A]) ≪ hL ([A])+1, which combined

with the inequality above yields h̃L ([A]) ≪ hF (A) + 1. As noted above, h̃L differs from

hAg,1,L
by a bounded function, so we get

hAg,1,L
([A]) ≪ hF (A) + 1 (4.9)

for every principally polarized A/Q of dimension g, where the implied constant depends

only on g and the choice of the Weil height hAg,1,L
.

Let ρ : Ag,1,3 → Ag,1 be the natural morphism which forgets the level structure. It

extends to a rational map

ρ : Ag,1,3 99K Ag,1.

Let S′ be the Zariski closure of ρ(S) in Ag,1 and fix Weil heights hS,M|
S

and hS′,L|S′ .

Therefore, as dimS′ = dimS and ρ|S : S 99K S′ is dominant, Theorem 1 of [Sil11] yields

positive constants ξ7, ξ8 and a non-empty Zariski open set U1 ⊆ S such that

hS,M|
S
(s) ≤ ξ7 · hS′,L|S′ (ρ(s)) + ξ8

for every s ∈ U1(Q) ⊆ S(Q). Since dimS = 1, U1 is obtained by removing finitely many

points from S. Note also that ρ is well defined on S and it is equal to ρ. Thus, we deduce

that

hS,M|
S
(s) ≤ ξ7 · hAg,1,L

(ρ(s)) + ξ8

for every s ∈ S(Q). Combining this with (4.9) gives

hS,M|
S
(s) ≤ ξ9 · hF (s) + ξ10 (4.10)

for every s ∈ S(Q) and for some positive constants ξ9, ξ10. Note that hF (ρ(s)) = hF (s),

since the Faltings height is independent of the level structure.

Now, let C be the Zariski closure of C inside A ⊆ PnQ × PmQ . As C is not contained in
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any fixed fiber of A, we have that π|C : C → S is surjective and thus we get a dominant

rational map π|C : C 99K S. As above, Theorem 1 of [Sil11] yields positive constants

ξ11, ξ12 and a non-empty Zariski open set U2 ⊆ C such that

hC,L|C
(P ) ≤ ξ11 · hS,M|

S
(π(P )) + ξ12

for every P ∈ U2(Q) ⊆ C(Q). As before, we can assume that U2 contains C, so that

hA,L(P ) ≤ ξ11 · hS,M|
S
(π(P )) + ξ12 (4.11)

for every P ∈ C(Q). Observe that hC,L|C
is equal to the restriction of the naive height hA,L

to C.

Finally, by Theorem A.1 of [DGH21], there exists a positive constant ξ13 such that

ĥAπ(P ),Lπ(P )(P ) ≤ hA,L(P ) + ξ13 · max
{

1, hS,M|
S
(π(P ))

}
for every P ∈ A(Q). Combining this with (4.10) and (4.11) we get

ĥAπ(P ),Lπ(P )(P ) ≤ ξ14hF (Aπ(P )) + ξ15

for some positive constants ξ14, ξ15 and for every P ∈ C(Q).

4.7 Arithmetic bounds

Recall the setting of Theorem 4.1 and the reductions made in Section 4.3: let S ⊆ Ag =
Ag,1,3 be a smooth, irreducible, locally closed curve, and let π : A = Ag ×Ag S → S. Let

C be as in Theorem 4.1 and define C′ as the set of points P ∈ C(C) such that Aπ(P ) has

CM and there exists a nonzero endomorphism f ∈ End(Aπ(P )) satisfying f(P ) = Oπ(P ).

Equivalently, P lies in a proper algebraic subgroup of Aπ(P ).

Assume that S,A and C are defined over the same number field k. Notice that if

P ∈ C(C), then Aπ(P ) is defined over k(π(P )) and, since π is non-constant,

[k(P ) : k] ≪ [k(π(P )) : k] ≤ [k(P ) : k] . (4.12)

Moreover, since C is defined over Q and complex abelian varieties with complex multi-

plication are defined over Q (see Proposition 26 from Section 12.4 of [Shi98]), it follows

that π(P ) ∈ S(Q) ⊆ Ag,1,3(Q) for every P ∈ C′. By (4.12), this shows that C′ is a subset of

C(Q).

From this point forward, γ1, γ2, . . . will be positive constants depending only on g, S,

A and C, unless otherwise specified.
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Lemma 4.26. Let A be a CM abelian variety of dimension g defined over a number field K. Then

there exist positive constants γ1, γ2 depending only on g such that hF (A) ≤ γ1 · [K : Q]γ2 .

Proof. By [Sil92], there exists a finite extension K ′/K of degree at most 2 · (9g)4g such

that all endomorphisms of A are defined over K ′. Théorème 6.1 of [Ré17] (see also the

remarks following its proof) then guarantees the existence of abelian varieties A1, . . . , At

defined over K ′ and positive integers e1, . . . , et with the following properties: each Ai

is K ′-simple, the Ai are pairwise non-isogenous over K ′, EndK′(Ai) = EndK′(Ai) is a

maximal order in End0
K′(Ai), and A is K ′-isogenous to A′ :=

∏t
i=1A

ei
i . So, there exists an

isogeny ϕ : A′ → A with

deg ϕ ≤ γ3 · max
{
hF (A′), [K ′ : Q]

}γ4 ,

where γ3, γ4 are positive constants depending only on g, by [GR14a, Théorème 1.4].

Since A has CM, each Ai has CM as well, and we may consider the corresponding

primitive CM types (Ei,Φi). Note that EndK′(Ai) = OEi by construction. Then, by

Corollary 3.3 of [Tsi18], there is a positive constant γ5 depending only on g such that

hF (Ai) ≤ |Disc(Ei)|γ5 . In addition, Theorem 4.2 of the same article yields positive con-

stants γ6, γ7, again depending only on g, such that |Disc(Ei)| ≤ γ6 · [K ′ : Q]γ7 . Combining

these two estimates gives

hF (Ai) ≤ γ8 ·
[
K ′ : Q

]γ9

for some positive constants γ8, γ9. Since for abelian varietiesA andB over a number field

one has hF (A×B) = hF (A) + hF (B), it follows that

hF (A′) = hF

(
t∏
i=1

Aei
i

)
=

t∑
i=1

ei · hF (Ai) ≤ γ10 ·
[
K ′ : Q

]γ9 .

Applying [Fal83, Lemma 5], we deduce

hF (A) ≤ hF (A′) + 1
2 log(deg ϕ)

≤ hF (A′) + γ4
2 log max

{
hF (A′), [K ′ : Q]

}
+ γ11

≤ γ12 ·
[
K ′ : Q

]γ9 .

where γ12 is a positive constant depending only on g.

Finally, recalling that [K ′ : K] ≤ 2 · (9g)4g, we obtain

hF (A) ≤ γ12 ·
[
K ′ : Q

]γ9 ≤ γ13 · [K : Q]γ14

for suitable positive constants γ13, γ14 depending only on g.
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Before proving the next lemma, we introduce a special Z-basis for End(A). Let A be a

principally polarized abelian variety of dimension g, defined over a number field K, and

let † denote the Rosati involution defined by the principal polarization. By Lemma 5.1

of [MW94] and Lemma 2.1 of [MW93], there exist positive constants γ15, γ16, depending

only on g, together with a Z-basis φ1, . . . , φN of the additive group End(A) := EndK(A)
satisfying

tr
(
ρr(φ†

iφi)
)

≤ γ15 max {[K : Q] , hF (A)}γ16

for every i = 1, . . . , N . Moreover, by [BL04, Proposition 1.2.2], one has N ≤ 4g2.

If A is CM, then Lemma 4.26 further implies that φ1, . . . , φN satisfy

tr
(
ρr(φ†

iφi)
)

≤ γ17 [K : Q]γ18 (4.13)

for suitable positive constants γ17, γ18 depending only on g.

Note that, for every s ∈ S(Q), the line bundle Ls = L|As introduced in Section 4.6,

defines the same Rosati involution as the one defined by the principal polarization λs :
As → Âs, since ΦLs = 12λs.

Lemma 4.27. Let P0 ∈ C′ and define φ1, . . . , φN ∈ End(Aπ(P0)) as above. Then, there exists a

non-zero endomorphism

fP0
=

N∑
i=1

aiφi ∈ End(Aπ(P0))

such that fP0
(P0) = Oπ(P0) and

max {|a1| , . . . , |aN |} ≤ γ19 [k(P0) : Q]γ20

for some positive constants γ19, γ20.

Proof. Since P0 ∈ C′, there exists a non-zero f ∈ End(Aπ(P0)) such that f(P0) = Oπ(P0).

Writing f =
∑N
i=1 biφi, we see that the N points φ1(P0), . . . , φN (P0) are linearly depen-

dent over Z. Then, by Proposition 6.1 of [BC20] (which relies on a result by Masser

[Mas88]), there exist integers a1, . . . , aN , not all zero, together with positive constants

γ21, γ22, γ23, γ24 such that

fP0
(P0) =

N∑
i=1

aiφi(P0) = Oπ(P0)

and

max
1≤i≤N

{|ai|} ≤ γ21 [k(P0) : Q]γ22 max
1≤i≤N

{
ĥAπ(P0),Lπ(P0)(φi(P0)), 1

}N−1
2
(
hF (Aπ(P0)) + γ23

)γ24
.

Here we used [MW93, Lemma 2.1] to ensure that the φi are defined over a finite extension
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of k(π(P0)) of degree bounded by a function of g; this implies that the points φi(P0) are

defined over a field of degree ≪g [k(P0) : Q].
By (2.4), Corollary 2.39 and (4.13), we also have that

ĥAπ(P0),Lπ(P0)(φi(P0)) ≤ 1
2 tr

(
ρr(φ†

iφi)
)

· ĥAπ(P0),Lπ(P0)(P0)

≤ γ25 [k(P0) : Q]γ18 · ĥAπ(P0),Lπ(P0)(P0).

Moreover, Proposition 4.25 shows that ĥAπ(P0),Lπ(P0)(P0) ≤ γ26hF (Aπ(P0))+γ27. Hence,

ĥAπ(P0),Lπ(P0)(φi(P0)) ≤ γ25 [k(P0) : Q]γ18 · (γ26hF (Aπ(P0)) + γ27).

Since N ≤ 4g2 and Aπ(P0) has CM, this implies

max
1≤i≤N

{|ai|} ≤ γ21 [k(P0) : Q]γ22 · max
i

{
ĥAπ(P0),Lπ(P0)(φi(P0)), 1

}N−1
2
(
hF (Aπ(P0)) + γ23

)γ24

≤ γ28 [k(P0) : Q]γ29 ·
(
γ26hF (Aπ(P0)) + γ27

)2g2 (
hF (Aπ(P0)) + γ23

)γ24

≤ γ30 [k(P0) : Q]γ31

by Lemma 4.26.

Now, let P0 ∈ C′ and choose τP0 ∈ u−1
b (π(P0)) ∩ FΓ, where Γ = Γ1,3, FΓ and the

uniformization map ub : Hg → Ag,1,3(C) were introduced in Section 4.2.1. The set

u−1
b (π(P0)) ∩ FΓ contains a single element unless some preimage of π(P0) lies on the

boundary of FΓ, in which case it contains O(g) elements.

Let ZP0 ∈ Fg be a point in the Sp2g(Z)-orbit of τP0 . Then one can choose a symplectic

basis of the period lattice of Aπ(P0) such that the corresponding period matrix is (ZP0 ,1),

once the level structure is disregarded.1 In the sequel, we fix this symplectic basis, and

all analytic and rational representations of endomorphisms of Aπ(P0) will be defined with

respect to it.

Since Aπ(P0) has CM, it is known (see for instance Section 6.2 of [Tsi18] or [Shi92]) that

[Q(ZP0) : Q] ≤ 2g.

Moreover, if we write τP0 = σ ·ZP0 for some σ ∈ Sp2g(Z), then we easily see that Q(τP0) ⊆
Q(ZP0), since σ has integer entries.

We now establish bounds for the heights of τP0 and ZP0 .

Lemma 4.28. Let P0 ∈ C′ and let τP0 and ZP0 be as above. Then, there are positive constants γ32,

γ33, γ34, γ35, such that Hmax(ZP0) ≤ γ32 · [k(P0) : Q]γ33 and Hmax(τP0) ≤ γ34 · [k(P0) : Q]γ35 ,
1If the level structure is taken into account, then one can choose a symplectic basis so that the period

matrix is (τP0 , 1).
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where Hmax is the entry-wise height on Matg(Q) defined in Section 2.3.1.

Proof. Since Aπ(P0) has CM, ZP0 is a CM point in Fg. Thus, by Theorem 1.3 of [PT13]

together with Theorem 5.2 of [Tsi18], there exist positive constants γ36, γ37, γ38, γ39, de-

pending only on g, such that

Hmax(ZP0) ≤ γ36 · #
(
Gal(Q/Q) · π(P0)

)γ37 ≤ γ38 · [k(P0) : Q]γ39 . (4.14)

Now, take σ =
(
A B
C D

)
∈ Sp2g(Z) such that τP0 = σ · ZP0 = (AZP0 + B)(CZP0 + D)−1.

Recall that the definition of FΓ (see (4.1)) implies that we can take σ to be one of the

chosen representatives σ1, . . . , σn for the right cosets of Γ in Sp2g(Z).

Then, using Proposition 2.18, we get

Hmax(τP0) ≤ g ·Hmax(AZP0 +B)g ·Hmax
(
(CZP0 +D)−1

)g
≪g Hmax(AZP0)gHmax(B)g ·Hmax(CZP0)2g4−g3

Hmax(D)2g4−g3

≪g Hmax(A)g2
Hmax(B)gHmax(C)2g5−g4

Hmax(D)2g4−g3 ·Hmax(ZP0)2g5−g4+g2

This implies that there exist a constant γ40, depending only on g and σ, such that

Hmax(τP0) ≤ γ40Hmax(ZP0)2g5−g4+g2
.

Taking the maximum of all such constants over all possible choices of σ ∈ {σ1, . . . , σn},

we get a constant γ41 that depends only on g and the choice of σ1, . . . , σn, such that

Hmax(τP0) ≤ γ41Hmax(ZP0)2g5−g4+g2
.

Finally, substituting the bound (4.14) forHmax(ZP0), gives the desired bound forHmax(τP0).

Lemma 4.29. Let P0 ∈ C′ and fP0
be the endomorphism given by Lemma 4.27. Then, ρa(fP0

) ∈
Matg(C) has algebraic entries and H2g

(
ρa(fP0

)
)

≤ γ42 · [k(P0) : Q]γ43 , for some positive con-

stants γ42, γ43.

Proof. Write ρr(fP0
) =

(
M1 M2
M3 M4

)
, where Mℓ =

(
m

(ℓ)
i,j

)
1≤i,j≤g

∈ Matg(Z) for ℓ = 1, 2, 3, 4.

Then, by Equation (2.1), ρa(fP0
) = ZP0M2 + M4, as Aπ(P0) is principally polarized by

assumption. This proves that ρa(fP0
) ∈ Matg(Q(ZP0)) ⊆ Matg(Q). Note also that all

entries of ρa(fP0
) have degree at most 2g.

Hence, Proposition 2.18 implies

Hmax(ρa(fP0
)) ≤ 2Hmax(ZP0M2)Hmax(M4) ≤ 2gHmax(ZP0)gHmax(M2)gHmax(M4)

≤ 2g
∥∥∥ρr(fP0

)
∥∥∥g+1

∞
Hmax(ZP0)g
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and, by Lemma 4.7,

H2g(ρa(fP0
)) ≤ 22g ·Hmax(ρa(fP0

))2g ≤ (4g)2g ·
∥∥∥ρr(fP0

)
∥∥∥2g(g+1)

∞
·Hmax(ZP0)2g2

.

Furthermore, since fP0
=
∑N
i=1 aiφi, we also have

∥∥∥ρr(fP0
)
∥∥∥

∞
=
∥∥∥∥∥
N∑
i=1

aiρr(φi)
∥∥∥∥∥

∞

≤
N∑
i=1

|ai| · ∥ρr(φi)∥∞

≤ N · max {|a1| , . . . , |aN |} · max
i

{∥ρr(φi)∥∞} .

By Proposition 4.15, there are positive constants γ44, γ45 such that

∥ρr(φi)∥∞ ≤ γ44 · max {1, ∥Im(ZP0)∥∞}γ45 ·
√

tr
(
ρr(φ†

iφi)
)
.

We then use Lemma 4.7 and Lemma 4.28 to get

∥Im(ZP0)∥∞ ≤ ∥ZP0∥∞ ≤
√

2g + 1 ·H2g(ZP0)

≤ 22g√2g + 1 ·Hmax(ZP0)2g ≤ γ46 · [k(P0) : Q]γ47
(4.15)

which, combined with (4.13), implies that

∥ρr(φi)∥∞ ≤ γ48 · [k(P0) : Q]γ49 .

Moreover, we use Lemma 4.27 to bound max {|a1| , . . . , |aN |}, so that

∥∥∥ρr(fP0
)
∥∥∥

∞
≤ 4g2 · max {|a1| , . . . , |aN |} · max

i
{∥ρr(φi)∥∞} ≤ γ50 · [k(P0) : Q]γ51 .

Finally, we get

H2g(ρa(fP0
)) ≤ (4g)2g ·

∥∥∥ρr(fP0
)
∥∥∥2g(g+1)

∞
·Hmax(ZP0)2g2

≤ (4g)2g · γ50 · [k(P0) : Q]γ51 · γ2g2

32 · [k(P0) : Q]2g2γ33

≤ γ52 · [k(P0) : Q]γ53

by Lemma 4.28.

Lemma 4.30. Let P0 ∈ C′ and let τP0 be as above. Then, there are positive constants γ54, γ55

such that

det(Im(τP0)) ≥ γ54
[k(P0) : Q]γ55

.

Proof. By Proposition 4.20, we have that det(Im(τP0)) ≥ δ3 max{1, ∥Im(ZP0)∥∞}−2g. Hence,
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(4.15) implies that

det(Im(τP0)) ≥ δ3

max{1, ∥Im(ZP0)∥∞}2g ≥ δ3

γ2g
46 · [k(P0) : Q]2gγ47

which gives the desired bound.

4.8 Proof of Theorem 4.1

We need to establish the finiteness of the set C′, introduced at the beginning of the previ-

ous section.

Let P0 ∈ C′ and let σ ∈ Gal(k/k). We aim to show that σ(P0) ∈ C′.

Since the abelian varieties Aπ(σ(P0)) and Aπ(P0) have isomorphic endomorphism rings,

it follows that both are CM abelian varieties. Moreover, the action of σ sends subgroups

of Aπ(P0) to subgroups of Aπ(σ(P0)), preserving their dimensions. Consequently, if P0 is

contained in a proper algebraic subgroup of Aπ(P0), then σ(P0) must be also contained in

a proper algebraic subgroup of Aπ(σ(P0)). Thus, σ(P0) ∈ C′.

To simplify notation, we set d0 := [k(P0) : Q] = [k(σ(P0)) : Q]. Then, Lemma 4.27 and

Lemma 4.29 imply the existence of a nonzero endomorphism fσ(P0) ∈ End
(
Aπ(σ(P0))

)
such that

fσ(P0) (σ(P0)) = Oπ(σ(P0)) and H2g
(
ρa(fσ(P0))

)
≤ γ42 · dγ43

0 .

Moreover, combining Lemmas 4.7 and 4.28 yields

H2g(τσ(P0)) ≤ 22g ·Hmax(ZP0)2g ≤ γ56 · dγ57
0 .

In addition, Lemma 4.30 gives the lower bound

det(Im(τσ(P0))) ≥ γ54
dγ55

0
.

Hence, as σ varies in Gal(k/k), the elements of u−1(σ(P0))∩Fg are all contained in the set

Z(γdη0), where Z(T ) is the set defined at the start of Section 4.5, with γ = max
{
γ42, γ56,

1
γ54

}
and η = max {γ43, γ57, γ55}.

However, the argument above implies that there are at least d0/[k : Q] distinct points

in u−1(σ(P0)) ∩ Fg that are contained in Z(γdη0). Applying Proposition 4.22 with ε = 1
2η ,

we deduce that d0 is uniformly bounded for all P0 ∈ C′.

Hence, by Lemma 4.26, the Faltings height hF (Aπ(P0)) is bounded above by a constant

independent of P0 ∈ C′. In view of (4.10), it follows that the height hS,M|
S

is bounded

on π(C′) ⊆ S(Q). Consequently, π(C′) ⊆ S(Q) is a set of bounded height and bounded
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degree, as [k(π(P0)) : Q] ≤ d0. Since M|S is ample, the Northcott property of the Weil

height (part (6) of Theorem 2.22) ensures that π(C′) is finite.

Therefore, C′ is contained in the intersection of C with the union of finitely many fibers

of A → S. As C is irreducible and not contained in any fiber, we conclude that C′ itself is

finite.
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