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Introduction

The study of Diophantine equations, that is, the study of integer or rational solutions of
polynomial equations with integer coefficients, is one of the most classical problems in
number theory. From the perspective of algebraic geometry, such equations define alge-
braic varieties, and their integral or rational solutions correspond to integral or rational
points on these varieties. This geometric viewpoint forms the basis of Diophantine geome-
try, which seeks to study rational solutions of Diophantine equations using the geometric
structure of the associated varieties.

In dimension one, i.e. for algebraic curves, the behaviour of rational points is con-
trolled by the genus. More precisely, if C is a smooth curve of genus ¢ defined over a
number field K, then:

e If g = 0, then either the set of K-rational points C'(K) is empty, or C is isomor-
phic over K to P!; in the latter case C(K) is infinite and Zariski dense in C(C). In

particular, this is always the case after passing to a suitable finite extension of K.

e If g = 1, then either C(K) is empty or C' is an elliptic curve over K. In the second
case, the Mordell-Weil theorem implies that C(K) is a finitely generated abelian
group. For a suitable finite extension L/K, C'(L) is an infinite set and, thus, Zariski
dense in C(C).

On the other hand, when g > 2, it was originally conjectured by Mordell [Mor22] that
C(K) is finite. Mordell’s conjecture was proved by Faltings in 1983 [Fal83], following
a strategy that involved reducing the problem to the Shafarevich conjecture via earlier

work of Parshin.

Theorem (Faltings). Let C be a smooth projective curve of genus g > 2 defined over a number
field K. Then C(K) is a finite set.

An alternative proof of Faltings’s theorem was given by Vojta [Voj91], using tech-
niques from Diophantine approximation. Subsequent simplifications of Vojta’s argument
were proposed by Faltings himself [Fal91] and by Bombieri [Bom90]. More recently, a
proof relying on p-adic Hodge theory was obtained by Lawrence and Venkatesh [LV20].
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Another possible approach to proving Faltings’s theorem begins by observing that if
C(K) # 0, then one can consider the curve C' as embedded into its Jacobian variety J¢

(via the Abel-Jacobi map), yielding an identification
C(K)=CnJo(K) C Je.

By the Mordell-Weil theorem, the group of K-rational points Jo (K) is finitely generated.
Thus, the set of rational points on C' can be viewed as the intersection of a subvariety of
an abelian variety with a finitely generated subgroup of the ambient variety, which we
expect to be finite.

This perspective naturally invites generalization. One may consider more general
ambient varieties, such as algebraic tori, abelian or semiabelian varieties; replace J¢ (K)
with more general subgroups, such as the torsion points, finitely generated subgroups,
or even subgroups of finite rank; and replace C with higher-dimensional subvarieties.

For example, replacing Jo (K) with the set of torsion points yields the original formu-
lation of the Manin-Mumford conjecture, which we will revisit in more detail in Chapter

This reinterpretation of Diophantine finiteness questions in terms of intersections be-
tween subvarieties and arithmetic subsets of algebraic groups leads to a broader frame-
work: the theory of unlikely intersections. The central idea is that one expects the in-
tersection between a fixed subvariety (satisfying certain genericity assumptions) and a
countable family of subvarieties with suitable properties to be non-dense, or even fi-
nite. This setting unifies several important statements in Diophantine geometry, such as
the above-mentioned Manin-Mumford conjecture, the Mordell-Lang conjecture, and the
André-Oort conjecture.

More specifically, given two subvarieties V,W of an ambient variety X such that
dim X > dimV + dim W, we usually expect the intersection V' N W to be empty. For
this reason, if VNW # (), we say that the intersection is “unlikely”. As mentioned before,
we are interested in the case in which V is fixed and W varies in a countable family of
subvarieties, known as “special subvarieties”. In this setting, the Zilber—Pink conjecture,
independently formulated in various contexts by Zilber, Pink, and Bombieri, Masser and
Zannier, predicts that if V' is not contained in a proper special subvariety, then its inter-
section with the union of special subvarieties of codimension > dim V' + 1 is not Zariski
dense.

In this thesis, we investigate several instances of the Zilber-Pink conjecture, with par-
ticular focus on the setting of families of abelian varieties. After introducing the general
conjecture and surveying known results in Chapter [1, we focus on two cases: curves in
products of powers of elliptic schemes (Chapter[3) and curves in abelian schemes (Chap-
ter[d). The main contributions of the thesis are Theorems[3.2]and which establish new

cases of the conjecture in these settings.
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Structure of the thesis

We conclude this introduction with a brief overview of the contents of each chapter.

In Chapter[I, we provide an overview of the main results about unlikely intersections,
with particular emphasis on the Zilber-Pink conjecture. We review the current state of
the art, focusing on the cases of algebraic tori, abelian varieties and, more importantly,
families of abelian varieties.

Chapter [2|is dedicated to height functions. We recall the definitions of Weil heights
on projective varieties and canonical heights on abelian varieties, along with their main
properties. We also prove the first original result of this thesis, Theorem which
provides explicit bounds for the canonical height of f(P) in terms of the canonical height
of P, where f is an endomorphism of an abelian variety A defined over Q and P € A(Q).

In Chapter 3, we study the Zilber—Pink conjecture in the case of a curve contained in
a product of two fibered powers of the Legendre family. The main result is Theorem
which proves finiteness of the intersection of the curve with proper algebraic subgroups
of fibers for which there are non trivial homomorphisms between the two powers. This
chapter is based on the preprint [Fer24], currently under review, and is presented here
with only minor changes.

In Chapter [ we further explore the Zilber-Pink conjecture for curves in abelian
schemes. The main result of this chapter, Theorem considers the intersections of a
curve with the union of all proper algebraic subgroups of the fibers with complex multi-
plication, extending a previous result by Barroero. The material of this chapter, together
with Section 2.6 will form the basis of an article to be posted on arXiv, before submitting

it to a journal.
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Chapter 1

Unlikely intersections and the

Zilber-Pink conjecture

This chapter introduces the topic of Unlikely Intersections, a class of problems in Diophan-
tine geometry that arise from heuristic expectations on the dimension of intersections
between subvarieties. The study of unlikely intersections plays a central role in Dio-
phantine geometry, and some fundamental references on this topic are the books [Pil22]
and [Zan12], which provide a comprehensive treatment of the main results, conjectures,
and techniques, and the survey article [Cap23].

The central idea which motivates most of the results of this field originates from a

classical result in algebraic geometry:

Theorem 1.1 (Lemma 43.13.4 (OAZP) from [Sta24]). Let X be a smooth variety and let V, W C
X be closed irreducible subvarieties. Then, every irreducible component of V.0 W has dimension
at least dim (V') + dim(W) — dim(X).

For general subvarieties V, W C X, one typically expect{]
dim(VNW) =dim(V) + dim(W) — dim(X)

and if dim (V') + dim(W) < dim(X), the intersection V' N W should be empty. If, instead,
V NW # () despite this expectation, we say that the intersection is unlikely.

More generally, problems concerning unlikely intersections can be formulated as fol-
lows. Let X be an ambient variety, and let F be a countable collection of subvarieties
of X satisfying certain properties (see [BD24], [Ull17] and [KUY15] for some examples),
which we refer to as special subvarieties. We study the intersections of a fixed irreducible
subvariety V' C X with the special subvarieties W € F satisfying dim V' < codim V.

Heuristically, we expect V. N W = () for “most” W & F, unless a specific geometric or

!This expectation can be formalized by using suitable moduli spaces.
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1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

arithmetic relation exists between V' and F. If no such relation exists, we expect the

union

U wnw)
WeF
dim V <codim W
not to be Zariski dense in V.
In this thesis we will always work over C (or more generally, over a field of character-
istic zero), as some of the results stated in this chapter are false in positive characteristic.
In the rest of this chapter we will always assume the varieties to be defined over C, unless

otherwise stated.

Example 1.2. A natural example of this setting arises in semiabelian varieties, for which
we can choose F to be the collection of the irreducible components of the algebraic sub-
groups or, equivalently, the translates of semiabelian subvarieties by torsion points, also
known as torsion cosets. We will explore problems in this setting in Sections|1.2|and

One of the simplest problems in this area occurs when considering special subvari-
eties of dimension 0, known as special points. In this case, the set of special points in any
special subvariety is Zariski dense, whereas for a non-special subvariety, we expect the
set of special points not to be Zariski dense. In the setting of semiabelian varieties, where
the special points are precisely the torsion points, this expectation is formalized by the

following theorem.

Theorem 1.3 (Manin-Mumford conjecture). Let X be a semiabelian variety and V. C X
be an irreducible subvariety. Then V contains only finitely many maximal special subvarieties.

Equivalently, the set of special points in V' is Zariski dense in V' if and only if V' is special.

Independently proposed by Manin and Mumford in the 1960s for curves embedded
in their Jacobians, the conjecture was later proven by Laurent [Lau84] for tori, by Ray-
naud [Ray83al |[Ray83b]| for abelian varieties, and by Hindry [Hin88] for semiabelian vari-
eties. Since then, several alternative proofs have been proposed. Notably, Ullmo [UIlI98]
and Zhang [Zha98a] proved a stronger version conjectured by Bogomolov, extending the
result to points of sufficiently small Néron-Tate height. Pila and Zannier [PZ08] provided
another approach using techniques from o-minimality.

In general, these questions are typically studied in the broader context of (mixed)
Shimura varieties, originally introduced by Deligne [Del71, Del79], building on special
cases introduced by Shimura [Shi63] as moduli spaces of abelian varieties with additional
structures. A Shimura variety naturally contains a distinguished collection of subvari-
eties, known as subuvarieties of Hodge type, which serve as its special subvarieties.

In this thesis, we focus on specific examples of mixed Shimura varieties, particularly

families of abelian varieties, and therefore we will not introduce the general theory. For
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1.1. THE ZILBER-PINK CONJECTURE

further background, we refer to [Mil05] and [Pin05al]. Nevertheless, for the sake of gen-
erality, we will state all key conjectures in the setting of mixed Shimura varieties.
A natural generalization of the Manin-Mumford conjecture to Shimura varieties was

proposed by André and Oort.

Theorem 1.4 (André-Oort conjecture). Let X be a (mixed) Shimura variety and V. C X be a
subvariety. Then V contains only finitely many maximal special subvarieties. Equivalently, the

set of special points in V' is Zariski dense in 'V if and only if V' is special.

The André-Oort conjecture was posed independently by André [And89, Section X.4]
for curves in general Shimura varieties and by Oort [Oor97] for general subvarieties of
the moduli space of principally polarized abelian varieties A,. It was first proved by
Klinger, Ullmo and Yafaev [KY14, [UY14] under the Generalized Riemann Hypothesis,
using ideas by Edixhoven [EdiO5]. It was later proved unconditionally for C" by Pila
[Pil11] and for A, by Tsimerman [Tsil8]. It was finally proved in full generality in 2022
by Pila, Shankar and Tsimerman [PST"22], building on work of Binyamini, Schmidt and
Yafaev [BSY23] and Gao [Gao16].

1.1 The Zilber-Pink conjecture

We now turn to the main conjecture in the field of unlikely intersections, the Zilber—Pink
conjecture. It was proposed independently by Bombieri, Masser and Zannier [BMZ99]
in the case of tori, by Zilber [Zil02] for semiabelian varieties and by Pink [Pin05b] in
the more general setting of mixed Shimura varieties. Its statement follows the general
heuristic outlined above, providing a broad formulation that encompasses most prob-

lems concerning unlikely intersection.

Conjecture 1.5 (Zilber—Pink, Version 1). Let X be a mixed Shimura variety or a semiabelian
variety. For every integer n > 0, denote by X" the union of all special subvarieties of X of
codimension at least n. Then, if V' C X is an irreducible subvariety not contained in any proper
special subvariety of X,

V A X ldimV+1]

is not Zariski dense in V.
This formulation, stated by Pink in [Pin05b, Conjectures 1.3 and 5.1], is sometimes

referred to as Pink’s conjecture.

Remark 1.6. In this thesis, we will deal mainly with the case in which V' C X is a curve.
In particular, notice that in this case Conjecture [1.5|reduces to the statement that, if V' is

not contained in any proper special subvariety, then V' N X2 is a finite set.

In what follows, we explore equivalent formulations.
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1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

Definition 1.7. Let X be a mixed Shimura variety or a semiabelian variety and V' C X
a subvariety. A subvariety W C V is called atypical (for V in X) if there exists a special

subvariety S such that W is an irreducible component of V' N S and
dimW > dimV +dim S — dim X.

Conjecture 1.8 (Zilber—Pink, Version 2). Let X be a mixed Shimura variety or a semiabelian
variety and V' C X be an irreducible subvariety. Then V contains only finitely many maximal

atypical subvarieties.

Note that if V' is contained in a proper special subvariety of X, then V' is an atypical
subvariety of itself, and so the conjecture holds trivially.
As the irreducible components of the intersection of two special subvarieties are again

special, we introduce the following definition.

Definition 1.9. Let X be a mixed Shimura variety or a semiabelian variety and let V' C
X be an irreducible subvariety. We denote by (V) the smallest special subvariety of X
containing V' (i.e. the intersection of all the special subvarieties containing V), which is

often called the special closure of V.

The following definition provides a way to measure how far a subvariety is from

being special.

Definition 1.10. Let X be a mixed Shimura variety or a semiabelian variety and let V' C X

be an irreducible subvariety. We define the defect of V' as
(V) =dim (V) —dim V.

We say that a subvariety W C V is optimal for V (in X) if for every subvariety U C X
such that W C U C V, we have §(W) < 6(U).

Notice that V' is clearly an optimal subvariety of itself. Moreover, if W C V' is optimal,
then we must have §(IW) < §(V), that is

dim (W) —dim W =§(W) < §(V) =dim (V) —dim V'
which is equivalent to
dim W > dim V + dim (W) — dim (V)

and this implies that W is atypical for V in (V). Conversely, W is atypical for V in X if
(W) < codim(V).



1.2. UNLIKELY INTERSECTIONS IN MULTIPLICATIVE GROUPS

Conjecture 1.11 (Zilber-Pink, Version 3). Let X be a mixed Shimura variety or a semiabelian
variety and V. C X be an irreducible subvariety. Then V contains only finitely many optimal

subvarieties.

Although these formulations appear different, Conjectures and are in fact
equivalent, provided that each of them is assumed to hold for all ambient varieties (and
not just for a fixed instance). The equivalence of Conjectures and [1.8]is proved in
Section 12 of [BD24], while Lemma 2.7 of [HP16] proves the equivalence of Conjectures

and
Remark 1.12. A subvariety S C X is special if and only if 6(S) = dim (S) — dim S = 0.

Thus, any maximal special subvariety contained in V' is optimal. Therefore, the Zilber—

Pink conjecture implies both the Manin-Mumford conjecture and the André-Oort conjec-

ture (Theorems|[1.3]and [T.4).

1.2 Unlikely intersections in multiplicative groups

Having outlined the general formulation of the Zilber—Pink conjecture, we now examine
specific instances in particular settings, starting with algebraic tori. The case of the multi-
plicative group G}, has been extensively studied, leading to a series of important partial
results that provide evidence for the conjecture in this context.

A prototypical example, and one of the first problems in this area, was posed by
Lang in the 1960s and independently proved by Ihara, Serre, and Tate (see [Lan65] for an

account of these proofs).

Theorem 1.13. Let f(X,Y) € C[X,Y] be an irreducible polynomial such that there exist in-
finitely many pairs of roots of unity (p1, po) satisfying f(p1, n2) = 0. Then, up to scaling, f has
the form

XY™ ¢  or  X"—(Y™

where n,m € N are not both zero and ¢ is a root of unity.

As discussed in Example the points (p1, 12), where p1, p12 are roots of unity, corre-
spond precisely to the special points of G2,. Similarly, the curves defined by the equations
X"y™ = (and X" = (Y™, where ( is a root of unity, are special subvarieties of G2, since
they are translates of algebraic subgroups by torsion points.

Thus, we can naturally interpret this theorem as follows: an irreducible curve C' C
G?2,, defined by an equation f(X,Y) = 0, contains infinitely many special points if and
only if it is itself a special subvariety. In other words, this result is a direct instance of
the Manin-Mumford conjecture (Theorem for G?n, which, for G?n, is equivalent to the

Zilber-Pink conjecture.



1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

Regarding the Zilber-Pink conjecture for G, we recall that (G, )!¥) denotes the union
of all special subvarieties, i.e., the torsion cosets, of codimension at least d. In [BMZ99],
Bombieri, Masser, and Zannier proved that if V' C GJ,, is an irreducible curve defined

over Q and not contained in a translate of a proper algebraic subgroup, then

V@GP = U vnH,
codim H>2
where the union is taken over all torsion cosets of codimension at least 2, is finite (see also
[CMPZ16] for an alternative proof using o-minimality). Note that Conjecture[1.5]suggests
that this finiteness should still hold under the weaker assumption that V' is not contained
in a torsion translate of a proper algebraic subgroup.

Conjecture for curves in G?, defined over Q was later established by Maurin
[Mau08§].

Theorem 1.14 (Maurin). Let V' C G2, be an irreducible curve, defined over Q and not contained

in any proper torsion coset of G,. Then, V N (G2,)?) is a finite set.

In the same year, Bombieri, Masser, and Zannier [BMZ08b] extended Maurin’s result
to curves defined over C. Additionally, in collaboration with Habegger, they provided
an alternative proof of Theorem in [BHMZ10].

Notice that, in the case of hypersurfaces in G}, the Zilber-Pink conjecture is equiva-
lent to Theorem Beyond the case of curves, significant progress has also been made
in studying subvarieties of codimension 2, with Bombieri, Masser, and Zannier [BMZ07]

proving the following result.

Theorem 1.15 (Bombieri-Masser-Zannier). Let V' C G}, be an irreducible subvariety of di-
mension n— 2, defined over Q and not contained in any torsion coset of G?,. Then, V N (G2, )1

is not Zariski dense in V.

However, with the exception of some results for planes [BMZ08a], the general case
of surfaces in G}, remains open. Nonetheless, there have been several important partial

results for general subvarieties of G7.,.

Definition 1.16. Let G' be a semiabelian variety and V' C G. An irreducible subvariety
W C V is called anomalous if there exists a translate 7" of a proper algebraic subgroup of
G suchthat W C V NT and

dim W > max {0,dim V + dim T — dim G} .

Moreover, we denote by V°* the complement in V' of the union of its anomalous subva-

rieties.



1.3. UNLIKELY INTERSECTIONS IN ABELIAN VARIETIES

In particular, for G = G}, V°* is open in V by Theorem 1.4 of [BMZ07].

In this context, we have the following result of Habegger [Hab09b], which gives a
uniform bound for the Weil height (see Chapter 2] for the definition of Weil height) of the
points in V¢ that lie in a torsion coset of the right codimension (see also [Hab17] for an

effective result).

Theorem 1.17 (Bounded Height conjecture). Let V' C G7, be an irreducible subvariety of
dimension d defined over Q. Then, V°* N (G?)\) is a set of bounded Weil height.

Notice that if V' is a curve, then the only possible anomalous subvariety is V itself,
if V' is contained in a translate of a proper algebraic subgroup. Thus, V°* in this case is
either empty or all of V, recovering Theorem 1 of [BMZ99].

Furthermore, Theorem allows to prove the following, which provides an impor-

tant partial result towards the Zilber—Pink conjecture for G},,.

Theorem 1.18 ([Hab09b} Corollary 1.4]). Let V' C G}, be an irreducible subvariety defined
over Q. Then, Vo N (G114 V+1 js g finite set.

Indeed, if V°% # (), then
VN (G:Ln)[dim V+1] C (V \ Voa) U (Voa N (G?r@n)[dlm V+1}) .

As Vo #£ () is open by [BMZ07, Theorem 1.4], the right side is a proper closed subset of
V, and therefore the Zilber-Pink conjecture holds for V.

1.3 Unlikely intersections in abelian varieties

We now turn our attention to abelian varieties, where the Zilber—-Pink conjecture has seen
substantial progress in recent years. As for multiplicative groups, recall that the special
subvarieties of an abelian variety are precisely the translates of the abelian subvarieties
by torsion points, again called torsion cosets. Recall also that for an abelian variety A
and a non-negative integer n, we denote by A"} the union of all special subvarieties of
codimension at least n.

The abelian Bounded Height Conjecture, i.e. the analogue of Theorem [1.17]for abelian
varieties, was established by Habegger in [Hab(09a] (with a partial result for curves due
to Rémond [Ré05, Lemme 3.3]). Building on another result by Rémond [Ré07, Corollaire
1.6], Habegger and Pila [HP16, Theorem 1.1] proved Conjecture for curves in abelian
varieties defined over Q. More recently, Barroero and Dill [BD22] extended this result to

curves in abelian varieties defined over C.

Theorem 1.19 (Habegger-Pila, Barroero-Dill). Let A be an abelian variety and C C A an
irreducible curve, both defined over C. If C'is not contained in a proper algebraic subgroup of A,
then C' N APl is a finite set.



1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

Previous partial results on the Zilber-Pink conjecture for curves defined over Q in
abelian varieties were obtained by various authors. Viada first proved finiteness in the
case where C' is not contained in the translate of a proper abelian subvariety and the
abelian variety A is a power of an elliptic curve with complex multiplication [Via03].
This restriction on C was later removed in joint work with Rémond [RV03|]. Ratazzi ex-
tended the result to the case where A is isogenous to a power of a simple abelian variety
with complex multiplication [Rat08]]. Carrizosa’s lower bounds for the Néron-Tate height
[Car08| [Car09], combined with Rémond’s upper bounds [Ré07], led to a proof of the con-
jecture for all abelian varieties with complex multiplication. Finally, the case of arbitrary
powers was treated by Galateau and Viada [Gall0, [Via08].

While the case of curves is now well understood, the study of higher dimensional
subvarieties remains largely open. As for algebraic tori, the Zilber-Pink conjecture for hy-
persurfaces reduces to the Manin-Mumford conjecture (Theorem [1.3), proved for abelian
varieties by Raynaud [Ray83a]. Furthermore, significant progress has been made for
subvarieties of codimension 2, culminating in a recent result of Barroero and Dill, which
follows from Corollary 1.6 of [BD22].

Theorem 1.20 (Barroero-Dill). Let A/C be an abelian variety of dimension n and V. C A an
irreducible subvariety of dimension n — 2, defined over C and not contained in any proper special
subvariety of A. Then, V-0 Al"=Y is not Zariski dense in V.

Partial results for codimension 2 subvarieties of abelian varieties defined over Q had
previously been proven by Checcoli, Veneziano and Viada [CVV14] for subvarieties in
powers of elliptic curves with complex multiplication; by Hubschmid and Viada [HV19]
in the non-CM case; and by Checcoli and Viada [CV14] for arbitrary products of CM
elliptic curves.

As in the toric case, several important partial results are known for general subvari-
eties of abelian varieties. First, the openness of the non-anomalous locus was established
by Rémond, who proved in [Ré09, Théoréme 1.4] that V°* is Zariski open in V.

Next, Habegger proved the following bounded height theorem, which may be viewed
as the abelian analogue of Theorem

Theorem 1.21 ([Hab09al)). Let A be an abelian variety and V' C A an irreducible closed subva-
riety of dimension d, both defined over Q. Fix an ample symmetric line bundle on A and let h be
the associated Néron—Tate height on A(Q). Then h is bounded on

veen Aldl,

This result was subsequently used to prove the following finiteness result, analogous
to Theorem which constitutes an important partial case of the Zilber-Pink conjecture

for abelian varieties.



1.3. UNLIKELY INTERSECTIONS IN ABELIAN VARIETIES

Theorem 1.22 ([HP16, Theorem 9.15]). Let A be an abelian variety and V' C A an irreducible
closed subvariety of dimension d, both defined over Q. Then the set

Voo N A[d+ 1]

is finite.

In particular, the same argument as in the toric case shows that the Zilber-Pink con-
jecture holds for any subvariety V' C A such that V°* # (.

We conclude by mentioning an extension of Theorem to the semiabelian setting,
proved by Barroero, Kithne and Schmidt [BKS23]|, relying on the semiabelian Bounded
Height conjecture proved by Kiihne in [K#20].

Theorem 1.23 (Barroero-Kiithne-Schmidt). Let G be a semiabelian variety and C C G be an
irreducible curve not contained in a proper algebraic subgroup of G, both defined over Q. Then
C N G is a finite set.

This result extends to curves defined over C in semiabelian varieties defined over Q,
by Theorem 14.1 of [BD24].

Remark 1.24. It can be shown, using an argument due to Zilber, that Theorem implies
Faltings’s theorem (formerly known as the Mordell Conjecture, see [[ntroduction)). For a
proof of this implication, see also [Cap23, Example 1.7].

1.3.1 Families of abelian varieties

So far, we have considered the case of fixed abelian varieties. However, all the conjectures
and results presented above have natural analogues in the context of families of abelian
varieties or, more formally, abelian schemes. This will be the setting of the problems
studied in Chapters [3|and E} Again, we assume that all the varieties are defined over C,
unless otherwise stated.

Let S be a regular, irreducible, quasi-projective variety and 7 : A — S be an abelian
scheme of relative dimension g > 1, i.e. a proper smooth group scheme such that for

every s € S the fiber A; := 7 !(s) is an abelian variety of dimension g.

Example 1.25. An important example of abelian scheme which will be used throughout
Chapteris the Legendre family of elliptic curves. Let S = Y (2) := P!\ {0,1, 0} and let
A : &, — S be the scheme with fibers given by

E:Y?Z=X(X - 2Z)(X - )\2)

foreach A € S. We will denote by £€7 — Y'(2) the n-fold fibered power £7, Xy (a). . . Xy (2)€L.-
Note that n sections P, ..., P, : Y (2) — &, definea curve (P, ..., P,)(Y(2)) C £ which
dominates the base Y(2).



1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

Let 7 : A — Sbe an abelian scheme. A subgroup scheme G C Ais a closed subvariety
which contains the image of G x g G under the addition morphism and the image of the
zero section O : S — A, and is mapped to itself by the inversion morphism. A subgroup
scheme G C A is called flat if 7| is flat. If S is a curve, this is equivalent (see [Har77,
Proposition I11.9.7]) to saying that every irreducible component of G dominates the base
S. Note that, if G is a flat subgroup scheme, then for every s € S(C) the fiber G is an
algebraic subgroup of A,. The dimension of this subgroup does not depend on s and it

is usually called the relative dimension of G.

Remark 1.26. It is worth noting that certain abelian schemes, such as those appearing as
universal families over Shimura varieties, can be realized as connected mixed Shimura
varieties. A general construction is given in [Pin05a, Construction 2.9], while [BD24, Sec-
tion 13] discusses the specific case of a fibered power of the Legendre family. In particular,
if S'is a curve and A — S is the fibered power of a non-isotrivial elliptic scheme, then the
special subvarieties of A are precisely the irreducible components of the flat subgroup
schemes and the irreducible components of algebraic subgroups of the CM fibers; see
[Habl3a, p. 144].

Let A — S be an abelian scheme of relative dimension g > 2, defined over C. For

each point s € S(C), denote by Aj tors the torsion subgroup of the fiber A,, and define

-Ators = U -As,tors-
seS(C)

Observe that Ay coincides with the union of the kernels of the multiplication-by-/N
maps on A, that is,

Ators - U ker[N]7
NezZ\{0}

where [N] : A — A denotes the multiplication-by-N morphism. Each torsion multisec-
tion ker[N] has codimension g in A. Hence, for a subvariety V' C A with dimV < g, we

expect the intersection V' N ker[N] to be unlikely. This motivates the following result.

Theorem 1.27 (Relative Manin-Mumford conjecture). Let S be a reqular, irreducible, quasi-
projective variety and 7 : A — S be an abelian scheme of relative dimension g > 1, both defined
over C. Let also V' C A be an irreducible subvariety such that | ey [N|V is Zariski dense in A.
If V(C) N Asors is Zariski dense in V, then dim V' > g.

The Relative Manin-Mumford conjecture originated from ideas outlined by Zhang in
his ICM talk [Zha98b], and was later formulated explicitly by Pink in [Pin05b, Conjecture
6.2]. It was recently proven by Gao and Habegger [GH23]|.

Earlier progress toward the conjecture had been made through a series of works by

Masser and Zannier. They first established it for curves in abelian schemes of relative

10



1.3. UNLIKELY INTERSECTIONS IN ABELIAN VARIETIES

dimension 2, defined over C and isogenous to a product of elliptic schemes [MZ10, MZ12,
MZ14], and later for more general abelian schemes of relative dimension 2 over bases
defined over Q [MZ15]. In collaboration with Corvaja, they also handled the case of
relative dimension 2 over a base variety defined over C [CMZ18]. The case of curves
in arbitrary abelian schemes defined over Q was subsequently treated by Masser and
Zannier [MZ20], while the surface case was addressed by Habegger [Hab13b] and by
Corvaja, Tsimerman, and Zannier [CTZ23]. Finally, for general subvarieties of fibered
products of elliptic schemes, the conjecture was proved by Kiihne [Kii23].

In the setting of families of abelian varieties, Pink also proposed another conjecture.

For an abelian scheme A — S, s € S(C) and an integer n let

codim H>n

where the union runs over all the algebraic subgroups H of the fiber .A. Define also

A[>n} _ U A£>n]
seS(C)
Conjecture 1.28 ([Pin05b, Conjecture 6.1]). Let A — S be an abelian scheme defined over C

and V' C A be an irreducible closed subvariety that is not contained in any proper closed subgroup
scheme of A, even after finite base changes. Then V N A=V is not Zariski dense in V.

Remark 1.29. Conjecture[I.28 was originally formulated in the broader context of families
of semiabelian varieties. However, this generalization was shown to be false by Bertrand
[Ber11], who constructed explicit counterexamples based on the existence of so-called Ri-
bet sections in certain semiabelian schemes. In subsequent work, Bertrand, Masser, Pillay,
and Zannier [BMPZ16] proved that, for one-dimensional families of semiabelian surfaces
of toric rank 1 defined over Q, Ribet sections are the only obstruction to the conjecture’s
validity. A complete and published account of Bertrand’s original counterexample has

recently been provided by Bertrand and Edixhoven [BE20].

Note that Conjecture[I.28]is weaker than Conjecture[L.5|for abelian schemes, as shown
in [Pin05b, Theorem 6.3 In the relative setting, partial results towards Conjecture
have been proved for curves in fibered powers of elliptic schemes.

Let S be a smooth, irreducible, quasi-projective curve and let £ — S be an elliptic
scheme, both defined over Q. Assume that £ is not isotrivial, i.e. it is not a constant
family even after a base change. For n > 2,let 7 : £ — S be the n-fold fibered power of
E. Given a curve C' C &", each point ¢ € C(C) defines n points Pi(c),..., P,(c) on the
fiber €7

2This result was originally stated for families of semiabelian varieties, but in this context it is incorrect, as
discussed earlier. However, the statement holds in the case of families of abelian varieties, as confirmed in
Remark 5.4(4) of [BE20].

11



1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

Theorem 1.30 (Barroero-Capuano [BC16]). Let C' C £™ be an irreducible curve defined over
Q, not contained in a fixed fiber of E™ and such that the n points Py, ..., P, defined by it are
generically independent (i.e. no relation of the form > ;' | a;P; = O with a; € Z not all zeroes
holds identically). Then there are at most finitely many ¢ € C(C) such that there exist vectors
(a1,...,an),(b1,...,by) € Z" that are linearly independent over Q and satisfying

arPi(c)+...+apPy(c) =b1Pi(c)+ ...+ b, Py(c) =O.

This result can be equivalently reformulated by noting that, for fixed linearly inde-
pendent vectors (ay,...,a,), (b1,...,b,) € Z", the set of points (Py,...,P,) of E" — S
satisfying

aPi+...+a,Pp=01Pi+...+b,P, =0

defines a flat subgroup scheme of codimension 2 (see Lemma 2.2 of [BC16]). Conversely,
every flat subgroup scheme is contained in a subgroup scheme defined by linear equa-
tions with integer coefficients of the same dimension [Hab13a, Lemma 2.5]. Thus, The-
orem is equivalent to stating that, if C' is not contained in a proper flat subgroup
scheme or in a fixed fiber, then the intersection of C' with the union of all flat subgroup
schemes of £" of codimension at least 2 is finite.

Note also that for n = 2, the codimension 2 flat subgroup schemes are exactly the tor-
sion multisections, so Theorem reduces to the Relative Manin-Mumford conjecture,
which was previously proved in this specific setting in the above-mentioned articles by
Masser and Zannier [MZ10, MZ12, MZ14].

Since the intersection of a flat subgroup scheme with a fiber yields an algebraic sub-
group of the same codimension in that fiber, Theorem provides evidence towards
Conjecture However, it does not fully establish the conjecture in this setting, as it
does not account for the algebraic subgroups of the fiber with non-trivial endomorphism

ring. The following result addresses this aspect.

Theorem 1.31 (Barroero [Bar19]). Let C C E" be an irreducible curve defined over Q, not
contained in a fixed fiber of E™ and such that the n points Py, ..., P, defined by it are generi-
cally independent. Then there are at most finitely many ¢ € C(C) such that &y has complex
multiplication and there exists (a1, ..., a,) € End(Exrc))™ \ {0} with

a1Pi(c)+ ...+ a,Py(c) = 0.

As before, Theorem is equivalent to say that if C' is not contained in a proper
flat subgroup scheme or in a fixed fiber, then the intersection of C' with the union of all
proper algebraic subgroups of the CM fibers of £" is finite.

Note that the conclusion of Theorem is stronger than that of Conjecture The

12



1.3. UNLIKELY INTERSECTIONS IN ABELIAN VARIETIES

conjecture considers only algebraic subgroups of codimension at least 2 in each fiber,
whereas in the case where the fiber £ has complex multiplication, an algebraic subgroup
of codimension d in £ corresponds to a special subvariety of codimension d 4 1in £". In
particular, algebraic subgroups of codimension 1 in CM fibers are special subvarieties of
codimension 2 in £", which are not taken into account in Conjecture

Observe also that, if C C £™ is contained in a fixed fiber or if £ is isotrivial, then
the analogues of Theorems and reduce to the case of a curve in a fixed abelian
variety, which is already covered by Theorem Therefore, by combining Theorems

[1.19}1.30} and[1.31} we obtain a proof of the Zilber-Pink conjecture for a curve in a fibered

power of an elliptic scheme, when everything is defined over Q.

A natural extension of these results concerns products of powers of elliptic schemes.
Let A : &y — Y (2) and i1 : £, — Y (2) be two copies of the Legendre scheme (we use sub-
scripts to avoid ambiguity when dealing with fibered powers) and, for positive integers
m,n,let E' x €} — Y (2) x Y(2) be the product of fibered powers of these schemes.

Consider an irreducible curve C' C £* x 5[} defined over Q. As before, each point ¢ €
C(C) defines m points Pi(c),..., Pn(c) on €yc) and n points Q1(c), ..., Qn(c) on &, ).
Assume that the P; are generically independent over End(&,.,) and the same holds for
the @;, which is equivalent to requiring that C' is not contained in a proper flat subgroup
scheme of £" x £} — Y(2) x Y(2). Suppose also that £ and &, are not generically

isogenous when restricted to C'.

Theorem 1.32 (Barroero-Capuano [BC17]). Let C' C E* x & as above. Then, there are at
most finitely many ¢ € C(C) such that there exist vectors (a1, . .., an) € End(Ey, )™\ {0} and
(b1,...,b,) € End(&,.)" \ {0} for which

ple
a1P1(0)+...+aum(C) = 0, and lel(C)++ann(C) = ON‘

In combination with Theorems and this result implies that, in the product
of two fibered powers of elliptic schemes under the above hypotheses, the intersection of
a curve with the union of all flat subgroup schemes of codimension at least 2 is finite.

Together with Theorem proved in Chapter 3| this addresses a large class of cases
predicted by the Zilber-Pink conjecture for curves in the product of two powers of the
Legendre family, with the exception of the case in which one factor has CM and there is
a linear relation on the other factor, which will be treated in future work.

Finally, for general abelian schemes, we have the following result.

Theorem 1.33 (Barroero-Capuano [BC20]). Let A — S be an abelian scheme over a smooth
irreducible curve S, and C' an irreducible curve in A not contained in a proper subgroup scheme
of A, even after a finite base change. Suppose that A, S and C are all defined over Q. Then, the

intersection of C' with the union of all flat subgroup schemes of A of codimension at least 2 is a

13



1. UNLIKELY INTERSECTIONS AND THE ZILBER-PINK CONJECTURE

finite set.

We will continue the study of the Zilber-Pink conjecture in the setting of abelian
schemes in Chapter [, where we prove Theorem a generalization of Theorem [1.3]]

to arbitrary abelian schemes.

14



Chapter 2

Heights

One fundamental tool in Diophantine geometry is the concept of a height function, which
provides a measure of the “size” or “arithmetic complexity” of an algebraic point on a
variety. One of the key properties we are interested in is that there should be at most
finitely many points of bounded height and bounded degree.

We will construct height functions by first defining them on @, then on projective
spaces, and finally on projective varieties. We will also consider the important case of
abelian varieties, where we can define a distinguished height function, called the Néron-
Tate or canonical height, which satisfies particularly nice properties. In Section we
will establish a new explicit bound for the canonical height of the image of points under
endomorphisms of an abelian variety.

The main references for this chapter are [BG06] and [HS13, Part B].

2.1 Absolute values and the product formula

2.1.1 Absolute values on general fields

Definition 2.1. Let K be a field. An absolute value is a function |-| : K — R>( satisfying

the following three properties:
1. forallz € K, |z| = 0ifand only if z = 0;
2. forall z,y € K, |zy| = |z| |y|;
3. forallz,y € K, |z +y| < |z| + |y|.

If in addition we have |z + y| < max(|z|,|y|) for all z,y € K, we say that the abso-
lute value is nonarchimedean or ultrametric. Otherwise, the absolute value is said to be

archimedean.

Example 2.2. For any field K, we have a trivial (nonarchimedean) absolute value, defined

by [0] = 0 and |z| = 1 for any z € K*.

15



2. HEIGHTS

Another easy example is the usual absolute value on R, |z| = max(z, —z), also de-

noted as |z|,, which is archimedean.

Definition 2.3. Two absolute values |-|; and |-|, on K are equivalent if there exists a con-
stant & > 0 such that |z|, = |z|5 for every x € K. Alternatively, |-|, and |-, are equivalent
if they define the same topology on K. An equivalence class of non-trivial absolute values

on K is called a place.
One way of constructing absolute values is using valuations.

Definition 2.4. A valuation is a function v : K — R U {oo} satisfying the following

properties:
1. forallz € K, v(z) = oo if and only if z = 0;
2. forallz,y € K, v(zy) = v(z) +v(y);
3. forallz,y € K, v(z +y) > min(v(x), v(y)).

If v is a valuation on K, we can define an absolute value on K by choosing ¢ € R

and setting

a V@) ifax £0

0 ifx=0

In particular, this is a nonarchimedean absolute value and it is easy to see that its equiv-
alence class does not depend on a.

2.1.2 Absolute values on number fields

Let p be a prime. For any x € Q*, there is a unique integer v, (z) such that

T = pl’p(ﬂf) .

with a and b integers not divisible by p. Extending v, to 0 by setting 1/,(0) = oo defines the
so-called p-adic valuation. We will call the associated absolute value on Q, || p = pwr(@)
the p-adic absolute value. It is clear that the p-adic absolute values and the usual absolute
value are pairwise not equivalent and the following theorem (see [Cas86, Theorem 2.1]

for the proof) shows that these are essentially the only absolute values on Q.
Theorem 2.5 (Ostrowski, 1916). On Q any nontrivial absolute value is equivalent to either:
* The usual absolute value, ||, or

e A p-adic absolute value, |-| o for some prime p.

16
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For a field K and a place v, we denote by K, the completion of K with respect to any

representative |-|, of v.

Proposition 2.6 (Product formula). Let K be a number field. It is possible to choose a set M

consisting of exactly one representative for each place of K such that, for every v € K*, we have

where d, = [K, : Q).

In the case K = Q, we can choose Mg to consist of the usual absolute value || and
the p-adic absolute values for every prime p. In this case, the product formula follows
easily from the fundamental theorem of arithmetic.

For a general number field K, we can take My as the set of absolute values on K
restricting to those in Mg on Q. However, these absolute values can also be explicitly
described, as we now explain.

We start by describing archimedean absolute values. For each embedding o : K — C,
we define an archimedean absolute value by |z|, = |o(x)|.,, where || denotes the usual
archimedean absolute value on C. Since |z| = |z|,, for every z € C, it follows that
||, = ||, whenever 7 = .

In light of this, we list the n := [K : Q] embeddings K — C as

Oly-++90r1,0pr141y -+ -3 0r147r2,0r1+15 - -+, Ory+rg)

where 01, ..., 0,, are the real embeddings and o, 41, ..., 0y, 4+, are the complex ones, up

to conjugation.

Thus, we get r + 72 non-trivial archimedean absolute valueson K, |-, , ..., |-|UT1+T2 ,
which are pairwise non-equivalent. One can also show that any non-trivial archimedean
absolute value on K is equivalent to one of these; see for example [Wal00, Section 3.1.3].
Moreover, if v is an archimedean place of the number field K, then K, = R if v corre-
sponds to a real embedding, and K, = C otherwise. Since Q, = R for every archimedean
place, we have

1 ifwvisreal,

dy = [Ky : Q] =

2 if v is complex.

Next, we describe the non-archimedean absolute values, which correspond to the non-

zero prime ideals of Ok.

To define the analogue of the p-adic valuation on K, let p be a prime ideal of Og. The

p-adic valuation v, is defined as follows. For any non-zero = € Ok, vy(z) is the unique

17
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integer such that there exists an ideal Z of Ok satisfying
20 = p»@) . T,

where p does not divide Z. Equivalently, v, (z) is the exponent of p in the factorization of
xOf into prime ideals.

This definition extends to all of K by setting

a

n (5) = (@ - )

for any a,b € K*, and we set 14,(0) = oo by definition.

Analogously to the definition of p-adic absolute values on QQ, we use this valuation to
define the p-adic absolute value on K. For a prime ideal p of K, let p be the prime number
such that p N Z = pZ.

We then define
|z], = p e (@)/eplp)

where e(p|p) = v4(p) is the ramification index of p over p. The factor e(p|p) ensures that
lpl, = p~1, so that ||, extends || . It can be verified that absolute values corresponding to
different prime ideals are non equivalent and that any non-trivial non-archimedean ab-
solute value on K is equivalent to one of these. Furthermore, if v is the non-archimedean
place of K associated with p, we have d, = e(p|p) f(p|p), where f(p|p) = [Or/p : Fp] is
the inertia degree of p. As before, we also have that d, = [K, : Q,].

The following theorem generalizes Theorem 2.5/ by showing that these are the only
non-trivial absolute values up to equivalence. For the proof we refer to Ostrowski’s orig-
inal articles [Ost16] and [Ost35], or [Con, Theorem 3.3].

Theorem 2.7 (Ostrowski). Every non-trivial absolute value on a number field K is equivalent
to one of the absolute values described above, namely, either a p-adic absolute value associated
with a unique non-zero prime ideal p of Ok, or an Archimedean absolute value induced by a real

or complex embedding of K.

From now on, we will denote by M the set of absolute values of K described above,
so that the product formula holds (see [HS13, Proposition B.1.2] for a proof). We will
write M for the set of archimedian (or infinite) places, and M} for the set of non-

archimedian (or finite) places.

2.2 The Weil height on Q

In light of our discussion on absolute values and the product formula, we now define the
Weil height on Q.

18
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Definition 2.8. Let o € Q be an algebraic number. The absolute logarithmic Weil height of
a is defined by

1
—_— Z dy log max{1, |, },

"R 2

where K is any number field containing «. We also define the absolute multiplicative Weil
height of a as H(«) = exp(h(a)).

First, observe that the sum is always finite, since |a|, = 1 for all but finitely many

v € M. Notice also that h(«) does not depend on the choice of K.

Example 2.9. If o = ¢ € Q is a rational number, where a, b are coprime integers, then we

have

11 max{l, % }: 1b] o

p prime p
and
& if lal_ > |b
max{l, ‘ }: %o 1f lalo > [Plog

bloo 1 otherwise

so that

h (Z) = log(|bl,) -i-logrnaX{la ; } = logmax {Jal , [Blo } -

‘ (e}

We now present several properties of the Weil height.

Proposition 2.10. 1. Forany o € Q, h(a) > 0. We have h(a) = 0 if and only if o = 0 or «

is a root of unity (Kronecker).

2. Forany a, 3 € Q, h(aB) < h(a) + h(B). Moreover, if 3 is a root of unity, then h(af3) =
h(a).

3. Forany ay,...,a, € Q we have h(ay + ... + ap) < h(aq) + ... + h(ay) + logn.
4. For any non-zero o € Q and any n € Z, h(a™) = |n| - ().
5. Forany a € Q and any o € Gal(Q/Q), h(c(a)) = h(a).

Observe that it is not possible to replace logn in part 3 with any smaller constant, as
demonstrated by the example a1 = ... = a,, = 1. For the proofs of these properties see
Section 1.5 of [BGO6].

Proposition 2.11 (Proposition 3.2 of [Zan14l]). Let R(z) = ggg € Q(z) be a rational func-

tion, with P(z), Q(x) € Q[z] coprime polynomials. Then, for every o € Q such that Q(«) # 0,
we have h(R(a)) = deg(R)h(c) + O(1), where deg(R) = max {deg(P),deg(Q)} and the
bounded function O(1) depends only on R.
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The following finiteness theorem is one of the reasons why height functions are so
widely used in Diophantine geometry, serving as a foundational result for many finite-

ness results, such as those described in Chapters [3]and [4}

Theorem 2.12 (Northcott). Let B and D be real numbers. Then, the set
{a €Q:h(a) < Band [Q(e) : Q] < D}
is finite.
Remark 2.13. Let a € Q and let f(z) = agz? + ... + a1z + ap € Z[z] be its minimal
polynomial. Assume that gcd(ag, ...,ap) = 1 and that a; # 0. Denote by a,...,aq € C

the (distinct) complex roots of f. Then we can give an alternative definition of the Weil

height of « as follows:

1 d
h(a) = 3 <log lag| + Zlogmax{l, |aj|oo}) .

j=1

This allows us to compute h(a) without computing the absolute values.

2.3 The Weil height on P"(Q)

We now begin to extend the Weil height to a more geometric setting.

Definition 2.14. Let P = [z : ... : ,] € P"(Q) and let K be a number field containing
xo, - - ., Tn. The absolute logarithmic Weil height of P is defined as:

1

"M kg

Z dy log max{|zol,, ..., |znl,}-

vEMK
As before, we define the absolute multiplicative Weil height of P as H(P) = exp(h(P)).

As for the Weil height on Q, this definition does not depend on the choice of K. Fur-
thermore, by the product formula, the height also does not depend on the choice of the
homogeneous coordinates of P, ensuring that it is well-defined. Moreover, it satisfies
h(c(P)) = h(P) for any o € Gal(Q/Q).

Remark 2.15. For n = 1, we recover the previous definition of the height on Q, since we
can embed Q into P1(Q) by o+ [1 : a].
More generally, we can embed Q" into P"(Q) by



2.3. THE WEIL HEIGHT ON P"(Q)

Thus, we can define the height of a point (ay, ..., a,) € Q" as
1
h((a1,. .. 0n)) = 7 Z dylogmax{1,|aq]|, ,...,|anl|,},
K- Q] &7, ’ ’
where we can choose K = Q(ay, ..., ay), as the definition does not depend on the choice
of K.
For apoint P = [z¢ : ... : z,] € P*(Q), we define its field of definition as
T Tn,
Q(P) =@<0,...,)
Ly Ly

for any index j such that x; # 0. In particular, up to permutations and normalization of
the coordinates, we may assume that zp = 1. From this, it follows that A(P) > 0 and, if
o = 1, h(P) > h(x;) for every i = 1,...,n. Thus, Theorem implies the following

generalization of Northcott’s theorem to P"(Q).

Theorem 2.16. Let B and D be real numbers. Then, the set
{PeP"(@:n(P) < Band [Q(P): Q] < D}
is finite.
In particular, this implies that for any fixed number field K, the set
[P e P (K): h(P) < T}

is finite for every 7' > 0.
Finally, we generalize Kronecker’s theorem (part 1 of Proposition [2.10) to projective

spaces.

Theorem 2.17 (Kronecker). Let P € P*(Q), and assume that zo = 1, as above. Then h(P) = 0

if and only if, for every j = 1,...,n, x; = 0 or x; is a root of unity.

2.3.1 Heights of matrices
Let M = (m; ;) € Mat, (Q). We associate to M two natural heights:
* the affine height, defined by
dy
H.g(M) = H max {1, 1%1?;(” {]mm.‘v}} [K:Q]

vEME

where K is a number field containing all the entries of M. This coincides with the

absolute multiplicative Weil height of M regarded as a point of @n2 ;

21



2. HEIGHTS

o the entry-wise height, defined by

The affine and entry-wise heights enjoy many useful properties with respect to usual

matrix operations, which we now collect.

Proposition 2.18. Let A, B € Mat,,(Q). Then:
1. Hypax(A) < Hag(A) < Hpa (A"
2. Huax(A+ B) < 2Hpyax(A) Hmax(B);
3. Hmax(AB) < nHmax(A)" Hiax(B)";
4. H(det(A)) <n!- Hug(A)";

5. if Ais invertible, Hpax (A7) < n!- (n —1)!- Hug(A)* L.

Proof. Let A = (a;;) and B = (b; ;) and fix a number field K containing all entries of A
and B.

1. Since max {1, |a; |, } < max {1, max {|a |, } }, we clearly have
1<i,j<n

H(aij) = [ max{1,lail, VT < Hog(A)
UGMK

which implies that Hax(A) < Hag(A). Moreover, recall that

max{l ) ax {laijl, }} I[I max{1,ai,l,}

hisn 1<i,j<n
which implies that Hag(A) < TT1<; j<n H(aij) < Himax(A)™.
2. The claim follows from the inequality

H(ai;+bi ;) < 2H(a;;)H(bi;) < 2Hmax(A)Hmax(B),

which is a direct consequence of part (3) of Proposition[2.10}

3. Let AB = (¢; ), where ¢; ; = Z a; ;b j. Then, applying Proposition [2.10| yields

C%] H az k bk,]) < nHmax(A)nHmax(B)n

which implies Hyax(AB) < nHmax(A)" Hmax(B)".
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2.3. THE WEIL HEIGHT ON P"(Q)

4. Recall that

n

det(A) = > sgn(o) [ aio0)

o€ESn i=1
where S,, denotes the symmetric group on n elements and sgn(o) € {£1} is the sign

of the permutation o. Hence det(A) is the sum of n! monomials of degree n in the

entries of A. In particular, for every place v € My, we have

n!- max {lai;|,}" if v is archimedean
det(A)], < ¢ =
n . . .
 ax {laijl,} if v is non-archimedean
Hence,
dy
s ™\ KQ
[ max {1, jdet(4)],} = < ] (max {1, max {laisl,}
veM?, vEMY,
n
e
= | I max {17 1ggg><<n{lai,jlv}}
UEM?(
and
dy
_dy__ "\ Q)
H max {1, |det(A)[,} K@ < H <n! max {1, max {|a; | }} )
1<i,j<n wv
veEMP veMpE
[KI:Q} e%oo v [I?':UQ] "
=) T {1, max flesgl, )}
vEMS® =h=n
dy n
KQ
=nl .
n ( 11 maX{17lg;3§n{!az,g\v}} )
veMpe
since 3, pree dv = [K : Q]. So, we have
_duv__
H(det(A)) = H max {1, |det(A)|,} KT
veEMK
_dy__ _dy
= H max {1, |[det(A)|, }ET - H max {1, |det(A)]|, } FQ
veEMP ’UGM?(
< n!- Hyg(A)".
5. The case n = 1 is trivial, so assume n > 2. Recall that A= = —L _ . O, where C =

det(A)
((=1)"1; ;) is the cofactor matrix and p;,; is the (i, j)-minofl| of A. Then, by part

@), H((—=1)™p; j) < (n — 1)!- Hag(A)" 1, so that Hyax(C) < (n — 1)! - Hag(A)" L
Therefore, Hypax (A1) < H(det(A)) - Hypax(C) < nl- (n— 1) - Hug(A)2 1L B

'Some authors use the word minor to denote just the matrix obtained from A by removing a row and a
column. In this case, by minor we mean the determinant of such a submatrix.
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2.4 The Weil height on Projective varieties

After studying the Weil height on P"(Q), we now extend this notion to the Q-points of
arbitrary projective varieties. This extension is provided by the Weil height machine, which
associates height functions to divisors on projective varieties, allowing us to measure the
arithmetic complexity of points on more general varieties.

In general, if a projective variety V, defined over a number field, admits an embed-
ding into P", we can define the height of a point in V(Q) by viewing it as a point in

P(Q).

As a first example, we consider P x P". In this case, we have the Segre embedding
Spm : P™ X PP e—s PN
(X,¥) = [ZoYo : TOYL -+ T TiYj 5. TnYn)
where N = (m + 1)(n + 1) — 1. This allows us to define hpm pn (X,y) := hpn (Smn(X,y)),

which satisfies the following property.

Proposition 2.19. For every x € P™(Q) and y € P"(Q), we have
h(Smn(x,y)) = h(x) + h(y).

More generally, to extend this approach to arbitrary projective varieties, we can use

any morphism into a projective space.

Definition 2.20. Let V be a projective variety defined over Q and let ¢ : V' — P" be a
morphism defined over Q. The height on V relative to ¢ is defined as

hg(P) := h(o(P)) for any P € V(Q)

where h is the absolute logarithmic Weil height on P" defined before.

Since height functions are defined via morphisms into projective space, one may
worry about their dependence on the choice of such morphisms. The next proposition en-
sures that if two morphisms come from the same complete linear system, the associated

height functions differ by a bounded function.

Proposition 2.21. Let V be a projective variety defined over Q. Let H C P" and H' C P™ be
hyperplanes. Let ¢ : V. — P" and ¢ : V. — P™ be morphisms such that ¢*H and )*H' are

linearly equivalent. Then we have
ho(P) = hy(P) + O(1)

for every P € V(Q). The bounded function O(1) depends on V, ¢ and 1) but not on P.
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2.4. THE WEIL HEIGHT ON PROJECTIVE VARIETIES

While the height functions we introduced depend on a choice of morphism into pro-
jective space, a more intrinsic approach exists. Instead of relying on embeddings, one can
define heights directly in terms of divisors on the variety. This construction, due to Weil,
is also known as Weil’s height machine and it allows us to translate geometric relations into

arithmetical statements about heights.

Theorem 2.22 (Weil’s height machine). Let V' be a smooth projective variety defined over Q.

Then, there exists a map
Div(V) — {functions V(Q) — R}
D — hv7 D
which is, up to a bounded function O(1), uniquely defined by the following three properties:

1. (Normalization) Let H C P" be an hyperplane. Then, for every P € P™(Q), we have

hpn 1 (P) = h(P) + O(1),

where h is the absolute logarithmic height on P™(Q).

2. (Functoriality) Let ¢ : V' — W be a morphism and let D € Div(W) be a divisor. Then, for

every P € V(Q), we have
hv,«p(P) = hw,p(¢(P)) + O(1).
3. (Additivity) Let D, D' € Div(V'). Then, for every P € V(Q), we have
hv,p+p/(P) = hv,p(P) + hy,p(P) + O(1).

Moreover, it satisfies the following additional properties:

4. (Linear equivalence) If D, D" € Div (V') are two linearly equivalent divisors, then

hv,p(P) = hy,p(P) + O(1)

for every P € V(Q).

5. (Positivity) Let D € Div(V') be an effective divisor, and let B be the set of base points
of the associated linear system |D|. Then, there is a constant v € R such that, for every
P e (V\ B)(Q), we have
hv,p(P) = 7.

6. (Northcott) Let D € Div(V') be an ample divisor. Then, for any constants B, C € R the set
{PeV(Q):[Q(P):Q] <Bandhyp(P)<C}
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2. HEIGHTS

is finite.

The bounded functions O(1) and the constant in property b} depend on the varieties, divisors and

morphisms, but not on the points on the variety.

The main idea behind this construction is to first define hy,p when D is very ample (or
even base point free). If D is very ample, then the map associated to its complete linear
system ¢|p) : V' — P" is an embedding such that ¢j;, H is linearly equivalent to D for
every hyperplane H C P". Then, we define hy,p = ho|p). Propositionimplies that,
up to a bounded function, this definition does not depend on the chosen embedding. In
particular, if H C P" is an hyperplane, the corresponding embedding gy P — P is
the identity, so property [I| follows easily.

For a general divisor D € Div(V), it is known (see [HS13| Theorem A.3.2.3]) that there
are two very ample divisors D1, Dy € Div(V), such that D = D — D,. Thus, we define

hv,p(P) = hv,p, (P) — hv,p,(P)

for every P € V(Q).
For the proof of Theorem we refer to the proof of Theorem B.3.2 of [HS13].

Remark 2.23. 1f the variety V is not smooth, we can use either Cartier divisors or line

bundles instead of Weil divisors. See for example Theorem B.3.6 of [HS13].

Example 2.24. Let C be a smooth projective curve of genus 0 defined over a number field
k. Then, the anticanonical divisor —K ¢ (which we assume defined over £, too) is very
ample and the image of C by the associated embedding is a conic in P? defined over k.
In particular, the height he _ i, corresponds to the restriction of the usual height on P?
to the image of this embedding.

Let C be a smooth projective curve of genus 1 defined over a number field %k and let
O € C(k). Then, the divisor 30 is very ample and the associated embedding (defined
over k) is

Ppo . C — P2
P+#0 — [z(P):y(P) : 1]
0o — [0:1:0]

where 2,y € k(C) are two functions satisfying
2 _ .3 2
Y* + a1y + a3y = + ax” + a4 + ag

for some constants ai, as, a3, as,as € k. In other words, C' is isomorphic to the elliptic
curve E in P? defined by the equation above and with identity element [0 : 1 : 0]. Thus,
the height on C associated to 30 is just the logarithmic height on P? restricted to E.
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2.5 Canonical height functions

The height functions obtained from Theorem 2.22]are well-defined only up to an additive
bounded term. In this section, we introduce a refinement that selects a distinguished rep-
resentative within this equivalence class, known as the canonical height. In particular, we
will consider the special case of abelian varieties, in which the canonical heights satisfy

additional properties related to the group structure.

Theorem 2.25 (Néron, Tate). Let V' be a smooth projective variety defined over a number field
and D € Div(V). Let ¢ : V. — V be a morphism such that ¢$*D ~ aD for some o« > 1. Then
there exists a unique function lsz#,, p : V(Q) — R, which we call the canonical height on V
with respect to ¢ and D, such that

i) hy.p.p(P) = hy.p(P) 4+ O(1) for every P € V(Q).
ii) h,g,p(¢(P)) = a - hy,g,p(P) for every P € V(Q).
iii) If D' € Div(V) is linearly equivalent to D, then EV,(b,D = TLV7¢7D/.

Moreover, hy; ,D can be computed as follows:

hv.p(P) = lim ihv,D(Gﬁ"(P))

n—oo "
where ¢" = ¢ o ... o ¢ is the n-th iterate of ¢.

To illustrate the construction of canonical heights, we consider the special case of

projective spaces.
Example 2.26. Let d > 2 and consider the morphism
Ty - P" — "
[0 :... xp] — [az%:...:xd}.

n

If H C P" is any hyperplane, then 7;H ~ dH. Thus, we can define a canonical height
hpn zy, 11 Since hpn 7 (P) = h(P) + O(1) and h(rq(P)) = dh(P) for every P € P"(Q), we

have

- 1 1
hen gt (P) = lim —hen pr(x) (P) = lim — (d¥h(P) +O(1)) = h(P).

Thus, in this case, the canonical height coincides with the absolute logarithmic Weil
height on P".

Proposition 2.27. Let V' be a smooth projective variety defined over a number field and D &
Div(V') be an ample divisor. Let ¢ : V' — V be a morphism such that $*D ~ aD for some
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o > 1 and let hy.y p be the associated canonical height defined in the theorem above. Then
hv.g.p(P) > 0 for every P € V(Q) and hy. 4, p(P) = 0 if and only if the set

{P.o(P),6*(P),...,¢"(P),...}

is finite.

2.5.1 Preliminaries on abelian varieties

In this section, we collect the foundational definitions and results concerning abelian
varieties that will serve as a basis for our development of canonical heights and for the
rest of the thesis. It is not intended as a comprehensive treatment of abelian varieties, for
which we refer the reader to [BL04, Mil08, MumO8].

Recall that an abelian variety is a projective, connected and geometrically reduced
group variety, i.e. a projective, connected and geometrically reduced variety A with a

base point O € A and morphisms

p:AxA— A
t:A— A

which endow A with the structure of a group. In other words, these maps satisfy the
following identities for all P,Q, R € A:

We say that the abelian variety is defined over K if the variety A, along with the
morphisms x and ¢, is defined over K and O € A(K). It is a classical fact that abelian
varieties are smooth, and moreover, the group law on A is commutative. Therefore, we
write u(P,Q) = P+ Q and «(P) = —P.

For any integer n, let [n]4 : A — A be the multiplication-by-n map. When no ambi-

guity arises, we will write [n] instead of [n]4.

Proposition 2.28 (Mumford’s formula). Let A be an abelian variety, D € Div(A) and n € Z.
Then ) )
n +n n°—n
D
2 + 2

In particular, if D is symmetric, i.e. [-1]*D ~ D, then [n]*D ~ n2D. On the other hand, if D

is antisymmetric, i.e. [-1]*D ~ —D, then [n]*D ~ nD.

[n]*D ~ [~1]*D.
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In this thesis we will be mainly working with abelian varieties defined over C, which
we will identify with their set of complex points. It is well-known that if A is an abelian
variety of dimension g defined over C, then A(C) is a complex torus, i.e. A(C) = V/A for
some g-dimensional C-vector space V' and some lattice A C V. After fixing bases of V'

and A, we have that A = I1Z29, for some matrix IT € Matgx24(C) called period matrix.

Let A, B be two abelian varieties. A homomorphism is a morphism f : A — B of group
varieties (in other words, it is a morphism of algebraic varieties which is also a group
homomorphism). When B = A such a map is called an endomorphism. A homomorphism

[+ A — Bis called an isogeny if it is surjective and it has finite kernel.

We denote by Hom(A, B) the set of homomorphisms from A to B and we define
End(A) := Hom(A, A) to be the set of all endomorphisms. Moreover, we define

Hom®(A, B) := Hom(A,B) ® Q End’(A) := End(4) ® Q.

Note that Hom(A, B) is an abelian group under point-wise addition and, similarly, End(A)
is a ring where the multiplication is given by composition of maps. We will always as-
sume that all the morphisms are defined over an algebraic closure of the ground field.

Given an endomorphism f of A = V/A, by Proposition 1.2.1 of [BL04], there is a
unique linear map F': V — V with F'(A) C A and inducing f on A. The restriction Fy of
F to A is Z-linear and completely determines both F' and f.

Fix bases of V' and A, and let II be the corresponding period matrix, i.e. the matrix
representing the basis of A in terms of the basis of V. With respect to these bases, F' and
F) are given by matrices p,(f) € Mat,(C) and p,(f) € Matyy(Z), respectively. Since
F(A) € A, we must have

pa(f) - IL=1L- pr(f). (2.1)

The associations F' — p,(f) and F) — p,(f) extend to injective ring homomorphisms

pa : End’(A) — Mat,(C)
pr: End®(A) — Mata,(Q)

called the analytic representation and the rational representation of End’(A), respec-
tively.

We denote by A = Pic’(A) the dual abelian variety, i.e. the group of line bundles on
A that are algebraically equivalent to zero. Given a point z € A, we denote by 7}, the

translation-by-z map. If L is an arbitrary line bundle on A, we have a homomorphism

[OF A— A\
(2.2)
r— TIL® L™t
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and we call K (L) its kernel. A polarization is an isogeny A — A of the form &, for some
ample line bundle L. We say that a polarization is principal if it is an isomorphism (i.e.
deg @1, = 1). Recall that any two algebraically equivalent ample line bundles on A define
the same polarization.

We denote by x (L) the Euler characteristic of L.

To any polarization ®;, on A corresponds a positive definite Hermitian form Hj; =
c1(L) : V x V — C, given by the first Chern class of the line bundle L. It is worth noting
that in the literature, the term polarization may refer either to the ample line bundle
L (up to algebraic equivalence), the associated isogeny @, or the Hermitian form Hy..
These notions are equivalent; see, for example, Section 4.1 of [BL04]. We denote by E}, =
Im(Hp,) the alternating Riemann form associated with L, which takes integer values on
the lattice A.

Given an ample line bundle L on A, there exists a basis of A, called symplectic basis,

such that the alternating Riemann form E7, : A x A — Z is represented by the matrix

[

where D := diag(dy,...,d,) is a diagonal matrix, with dy, ..., d, positive integers such
that d; divides d;;1 foreachi =1,...,g— 1. We call D the type of the polarization ¢, and
we define the Pfaffian of Ey, as Pf(Er) = det(D) [BL04, Section 3.2]. The degree of the
isogeny @7, is called the degree of the polarization and it is easy to prove that it is equal to
Pf(EL)? = det(EL).
Next, we define the Rosati (anti-)involution on End’(A) with respect to the polariza-
tion @y, as:
f:End®(A) — End®(A)
- (2.3)
foo—=ft=atofo,
where | € End®(A) denotes the dual of f and, with a slight abuse of notation, we also
denote by @/, the corresponding element of Hom"(A, A). This map is Q-linear and satis-
fies (fg)f = ¢ fT for all f, g € End®(A). In particular, if @, is a principal polarization, the

Rosati involution restricts to an involution on End(A).

2.5.2 Canonical heights on abelian varieties

Having introduced the general theory, we now explore canonical heights in the context
of abelian varieties. In this setting, the group structure imposes additional constraints on
height functions, leading to stronger arithmetic properties. In particular, by Proposition
Theorem implies that we can construct a canonical height associated with ei-

ther a symmetric or an antisymmetric divisor. We will first consider the symmetric case,
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which is the primary focus of the next section as well as Chapters [3|and 4

Theorem 2.29. Let A be an abelian variety defined over a number field, and let D be a symmetric
divisor on A. Then there is a unique function h A0 : A(Q) — R, called canonical height on A

relative to D, satisfying the following properties:
i) hap(P) = hap(P)+ O() for every P € A(Q).
ii) For everyn € Z, ﬁAvD([n]P) =n? -?LAD(P)for every P € A(Q).
iii) If D' € Div(A) is symmetric, then ?LADH)/ = ﬁA,D + ﬁAJy.
iv) If D" € Div(A) is linearly equivalent to D, then ?LAJ) = ?LA7D/.

v) (Parallelogram Law) lALA,D(P +Q) + iALA,D(P -Q) = 2lALA,D(P) + 271,4,]3(@), for all

P,Q € A(Q).
Classically, h A,p is defined as the canonical height on A with respect to [2] : A — A,
using Theorem [2.25¢
~ 1
hap(P)= lim —hy p([2"]P).

n—oo 4N

However, one can show that replacing 2 with any integer m # —1,0, 1 yields the same

canonical height on A.
Remark 2.30. If D is an ample and symmetric divisor on A, then Proposition implies
that }\LA’D(P) > 0 for every P € A(Q). Moreover, EAVD(P) = 0 if and only if the set

(P,[2]P,[4]P,...,[2"|P,.. .}

is finite. This finiteness condition is in turn equivalent to the existence of integers 0 <
i < j such that [2{]P = [27] P, which is equivalent to P having finite order, i.e., P being a
torsion point.

Furthermore, if D is a symmetric and nef divisor on A4, then for any ample and sym-
metric divisor H and any n > 0, the divisor nD + H is ample and symmetric, as follows

from Kleiman’s criterion, and we have
nhap =hanp+a —hang > —han.

Since H is ample, we have h A0 > 0,and as n > 0 is arbitrary, it follows that h A,p > 0as

well. However, as shown in [KS16], when D is nef and symmetric, the set
{PeA@:hap=0}

may contain more than just the torsion points.
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We can now state an analogous theorem for antisymmetric divisors.

Theorem 2.31. Let A be an abelian variety defined over a number field, and let D be an antisym-
metric divisor on A. Then there is a unique canonical height function hap : A(Q) — R, such
that:

i) hap(P) = hap(P)+O(1) for every P € A(Q).
ii) If D' € Div(A) is antisymmetric, then EA7D+D/ = ?LA,D + ?LA,D/.
iii) If D' € Div(A) is linearly equivalent to D, then EA,D = EAD/.

iv) Forall P,Q € A(Q),
hap(P+Q) =hap(P)+hap(Q).

In particular, EA,D([n]P) =n- ﬁAD(P)for every P € A(Q) and any n € Z.

Similar to the symmetric case, the assumption that D is antisymmetric implies that
[2]*D ~ 2D. Thus, we can apply Theorem to define the canonical height 74 p as:

hap(P) = lim —hap([2"]P).

n—oo 2N

Now, we combine Theorems and to extend the definition of canonical heights

to arbitrary divisors.

Theorem 2.32. Let A be an abelian variety defined over a number field, and let D be a divisor
on A. Then, there is a unique function /f\LA7D : A(Q) — R such that ?LA,D = hap+ O(1) and
h 4,0(0) = 0, called canonical height on A relative to D, satisfying the following properties:

i) If D' € Div(A) is linearly equivalent to D, then }AzAVD = EAﬁD/.
ii) If D, D’ € Div(A), then EA,D-&-D’ = TLA,D + TlAyD/.

iii) Let B be another abelian variety (also defined over a number field), and let ¢ : B — Abea
morphism. Then
hpgp =hapod—hap(¢(Op)).

In particular, if ¢ is a homomorphism, h B,¢*D = h A,D © .

Given a divisor D on A, the key idea in constructing the associated canonical height
is to define the divisors D™ = D+ [—1]*D and D~ = D — [-1]*D. Then, D7 is symmetric
and D~ is antisymmetric, so we can define h A.p+ and h A,p- using the theorems above.

Hence, since Dt + D~ = 2D, we can define

hap++hap-

han =
A,D 2
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2.6 Canonical height bounds for endomorphisms of abelian va-
rieties

Let A be an abelian variety of dimension g defined over Q, and let D be a symmetric
divisor on A. Since D is symmetric, Theorem states that

hap([n]P) =n? hap(P)

forany P € A(Q) and for every n € Z. The aim of this section is to generalize this identity
to arbitrary endomorphisms of A.
It was noted by Naumann [Nau04] that, if End’(A) is Q, an imaginary quadratic field

or a definite quaternion algebra over Q, and if D is an ample symmetric divisor, then

hap(F(P)) = (deg /)9 - hap(P)

for any f € End(A4) and any P € A(Q), recovering a well known fact for elliptic curves.
In general, however, we cannot expect an identity of this form, as illustrated by the

following example. Consider A = E x E, where E is any elliptic curve with identity

element O, and let D = (O x E) 4 (E x O). Define the endomorphism f : A — A by

f(P17P2):(P172P2)-

Since we can write D = 7{(O) + 75(0), where 71 and my are the projections onto the two

factors, we obtain

hap(Pr, Py) = hpo(mi(PL, Py)) + hp.o(m(Py, P)) = hg.o(P1) + hp.o(P2)

by Theorem Choosing either P, = O or P, = O, we conclude that there is no

constant « such that
hap(f(P)) = hp,o(P1) + 4hpo(P) =7 - (BE,O(Pl) + ?LE,O(PZ)) =~ -hap(P)

for every P = (P1, P») € A(Q). Nonetheless, since the divisor O is ample, it follows that

~

ha,p(P) < hap(f(P)) < 4hap(P).

)

More generally, if D is ample and symmetric, there exist constants 0 < y; < 75 such
that

Y1 -ha,p(P) < hap(f(P)) <2 -han(P).
In particular, 71 must be taken equal to 0 if f is not an isogeny, while it can be chosen
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strictly positive if f is an isogeny.

To prove the upper bound, recall that since D is ample, there exists an integer o
such that nD — f*D is ample for all n > Ny, see for instance [Laz04, Example 1.2.10]. This
implies

Ny - hap(P) = hap(f(P)) = han,p—pp(P) >0
giving the upper bound with 7y, = N.

For the lower bound, first observe that if f is not finite, then the dimension of ker( f)
is positive and, in particular, there is a non-torsion point P € A(Q) for which f(P) = O.
Therefore, we must have 7; = 0 in this case. On the other hand, if f is finite then f*D is
ample. Thus, as before, there exists an integer N; > 0 such that nf*D — D is ample for

any n > N;. This means that

N1 - hap(f(P)) — hap(P) =han, p-p-p(P) >0

from which we deduce the lower bound, with y; = N% > 0.

If f is an isogeny, the existence of these bounds also follows from Theorem B in
[Leel6].

Unfortunately, this method does not provide effective values for v; and », although

explicit computations may be possible for specific choices of D and f.

The main result of this section is the following theorem, which gives explicit values
for 71 and 72 in terms of the eigenvalues of the analytic representation of fTf, where  is

the Rosati involution defined by the polarization associated to D. Define

ap(f) =min{ay,...,az} and of(f) =max{a,...,q4},
where a4, ..., o4 are the eigenvalues (counted with multiplicities) of p,(f F£). We will

prove in Lemma that these eigenvalues are real and non-negative.

Theorem 2.33. Let A be an abelian variety defined over Q, and let D be an ample symmetric

divisor on A. Then, for every endomorphism f : A — A, we have

ap(f) hap(P) <hap(f(P) < ah(f) hap(P)

for every P € A(Q). Moreover, these constants are the best possible, meaning that we cannot

replace o}, (f) and ap,(f) with a smaller and a larger constant, respectively.

We will prove this theorem in Section [2.6.2]
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2.6.1 Properties of endomorphisms and line bundles of abelian varieties

Fix an ample divisor D on A = C9/A and let L = O4(D) be the associated line bun-
dle. In the following, T denotes the Rosati involution induced by the polarization ®;,
corresponding to L.

We start with a classical result about the eigenvalues of p,(fTf). The following proof
is inspired by an argument by Masser and Wiistholz [MW94] (used also in Section [4.4).

Lemma 2.34. Let f € End"(A). Then all the eigenvalues of p,(f1 f) are real and non-negative.

If f # 0, then at least one eigenvalue is positive.

Proof. By Proposition 5.1.1 of [BLO4], we have that Hy,(pa(f)v,w) = Hy (v, pa(fHw), for
every v,w € C9, where Hy, : C9 x C9 — C is the Hermitian form associated with the

ample line bundle L. Thus, if #, is the matrix representing Hy, we have

it
pa(f1) =Hp pa(F) He
where 1" is the conjugate transpose of the matrix M.

Since L is ample, Hy, is positive definite, and therefore there is an invertible matrix S
such that H; = S's. Thus, we have

pa(fTF) = HE - pa(F) - He - pa (F) = STS)  pa()' S Spalf).

By setting X = S - p,(f) - S~!, we have that

pa(F1) =SS pa(f) - 58S palf)-S7LS = STIX' XS

proving that p,(ff) has non-negative real eigenvalues, since X'Xisa positive semidef-
inite matrix and eigenvalues are invariant under change of basis. In particular, as Hermi-
tian matrices are diagonalizable, this also implies that X'X cannot have all zero eigen-
values unless it is the zero matrix. However, if X has entries z; ; € C and X'x = 0,
then 0 = tr(X'X) = 1o | ;|%, which implies that X = S - p,(f) - S~' = 0 and thus
pa(f) = 0. m

Notice that for f € End(A), the matrix p,(f7f) has only positive eigenvalues if and
only if X is invertible, which is the case precisely when p,( f) is invertible, i.e. when f is
an isogeny.

Denote by P, ((z) and Py f(x) the characteristic polynomial of f7f with respect to
the analytic and the rational representations, respectively. Using [BL04, Proposition 5.1.2]

and the previous lemma, P, . and PJ; , are real polynomials and we have

(@) = (P @) 24)
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With these notations, we have the following generalization of Lemma 2.1 of [Lan88] (see
also [BL04, Proposition 5.1.6]).

Lemma 2.35. Let L be an ample line bundle, f € End(A) and a,b € Z, with b > 0. Then,
* 1 —b ay __ g a a
WL e I =x(n) v P (5)).
Proof. Fix b > 0 an integer. By Corollary 3.6.2 of [BL04], we have
X(f*L7" ® L")? = deg(® e p-vgypa)
where the map ®; was defined in . By [BL04, Corollary 2.4.6] we have
(bf*Lfb®La = —[b]q)f*L + [a}(I)L and (I)f*L = f(I)Lf = (I)Lfo.
Then, recalling that for every ¢ € End(A), deg(¢) = det(pr(¢)) [BLO4, eq. (1.2)], we get

X(F'L7 @ L%)? = deg (- [t]@Lf1f + o]y
— deg @y, - deg (~[0]f'f + [a))
= deg @, - det (p,(~[8] - f1f + [a]) )
= deg @y - det (~b- p,(f1f) +a - 1a)

—deg @, 077 det (~py(£11) + § 1y

2 12¢g T a 2 12g a a 2
=x(L)"-b 'Pfo b = x(L)"- 0% - fir\p
by Equation (2.4). Here 1, is the 2g x 2g identity matrix. It follows that

* T — a a a
Lo I = () v P (5
Fix b > 0 arbitrary. Since L is ample, we have x(L) > 0. Moreover, for all sufficiently large
a > 0, the divisor f*L~°® L is ample by Kleinman's criterion, hence x(f*L~"® L?) > 0.
Finally, since Pf; ; is a monic polynomial (see [BLO4, after proof of Proposition 5.1.2]),

P (%) is also positive for all sufficiently large a > 0, completing the proof. O

For the reader’s convenience, we also recall the following theorem, which combines
results by Kempf [Kem), Theorem 2] and by Mumford [Mum08) Section 16]. Here, given
a line bundle M on A, we denote by H*(A, M) the i-th cohomology group of M. Recall
also that we denote by K (M) the kernel of the homomorphism ®,; : A — A.

Theorem 2.36. Let M and M’ be line bundles on an abelian variety A of dimension g, with M

36
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ample. Consider the polynomial Pys np(x) € Q[x] (of degree g) such that
Pagar(n) = x(M" @ M)
for every n € Z. Then:
(i) All roots of Pyy ap are real and dim K (M) is equal to the multiplicity of 0 as a root,
(i) (Mumford’s vanishing theorem) If K (M') is finite, there is a unique integer i = i(M'),
with 0 < i(M') < g, such that H*(A, M) = 0 for k # i and H*(A, M") # 0. Moreover,

K(M'=Y) is finitd|and i(M'~') = g — i(M").

(iii) Counting roots with multiplicities, assume that Py py has N_ negative roots and N

positive roots, then:
H*(A, M) =0, if0<k<N,
HI8(A,M')=0, if0<k<N_.
Finally, we have the following characterization of ample line bundles.

Proposition 2.37. [BL04, Proposition 4.5.2] A line bundle M on A is ample if and only if K (M)
is finite and H°(A, M) # 0.

2.6.2 Proof of Theorem|[2.33

Given an abelian variety A of dimension g defined over a number field, an ample sym-
metric divisor D and f € End(A), let o, ..., oy be the eigenvalues (counted with multi-
plicities) of p,(f'f), where the Rosati involution is defined with respect to the polariza-
tion L = O4(D).

Define o, (f) = min{a,...,a,} and of(f) = max{a1,...,a,}, as before. Notice
that, by Lemma ap(f) is non-negative and it is positive if and only if f is surjective,
which is compatible with what we said in the introduction. Moreover, a,(f) > 0 for
every f # 0.

Proof of Theorem The claim is trivially true for f = 0, so we will assume that f # 0
for the rest of the proof. Let A\ = 7 be a rational number, with b > 0, and let L be the
line bundle associated to D. As above, consider L as a polarization on A and define the

Rosati involution with respect to this line bundle.

2This follows from [BL0O4, Lemma 2.4.7 (c)].
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We start by proving the upper bound. Consider the line bundle M = f*L~° @ Le.
Then, for every n € Z,

Prar(n) = x(L" @ M) = x(f*"L™" @ L") = x(L) - b7 - }sz(n Z a)

by Lemma Thus, we have

Pras(e) =x(L) -8 P ()

_X(L).bg.ﬁ(x—;;a—ai>

i=1

=x(L) - [] (@ = (bas — a)).
i=1

Combining Proposition and Theorem we obtain that M is ample if and only
if all the roots of P s are negative, which is equivalent to say that § > «; for every

1=1,...,g9.

This implies that if A = ¢ > a};(f), then the divisor aD — bf* D is ample and symmet-
ric and therefore, by Remark and Theorem we have

a-hap(P)—b-hap(f(P)=a-hap(P)—b-hasp(P)=haap spp(P)>0
for every P € A(Q), which is equivalent to ﬁA,D(f(P)) <A ?lAyD(P). Since this is true

for every A € Q such that A > o, (f), this implies that hap(f(P)) < ob(f) hap(P).

In order to prove the lower bound, we consider the line bundle M = f *Lb @ L.
By Theorem and Proposition M is ample if and only if K (M) is finite and
HI(A,M~1) # 0. Using Lemma as before, we get that

Prar(@) = x(@) ¥ Py () =x(0) - T[ 2 = (bas - ).
=1

By [BL04, Lemma 2.4.7(c)], K(M) = K(M~!), and Theorem implies that K (M 1) is
finite and H9(A, M~') # 0if and only if all the roots of Py, pr-1 are positive, that is, if and

onlyif ¢ < a; foreveryi=1,...,g.

Again, this means that for every A = § < a,(f), the divisor bf*D — aD is ample and

symmetric and thus we have
b-hap(f(P))—a-hap(P)=b-happ(P)—a hap(P)=haprp-ap(P) >0

for every P € A(Q), which is equivalent to /FLA’D(f(P» > A iAzA,D(P). Since this is true
for every A € Q such that A < o (f), this implies that hap(f(P)) > ap(f)- /BA,D(P).
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We now prove that the constants ap,(f), o} (f) are optimal.

Consider the Q-divisor AD — f*D. Observe that the proof above shows that A\D — f*D
is ample if and only if A > af(f). From this we deduce that, if A € Q and A < a,(f),
then AD — f*D is not nef. Otherwise, (A + ¢)D — f*D would be ample for every ¢ > 0
[Laz04, Corollary 1.4.10], which is impossible for ¢ small enough.

Then, assume that 0 < & < «f,(f) is such that lALA,D(f(P)) <a- EAD(P) for every

P € A(Q). Without loss of generality we can assume that « is rational. Then, since D is

ample, f*D is nef and, thus, f*D + D is ample. Therefore, we have that

ha g p+p(P) <hy Gi1)p(P)

from which we can deduce, using [Leel6, Lemma 4.1], that (& + 1)D — (f*D + D) =
aD — f*D is nef, which is impossible.

A similar argument, using the Q-divisor f*D — AD, shows that one cannot have
hap(f(P)) > a-hap(P) for some & > ap(f) and every P € A(Q). O

Remark 2.38. Assume that A is simple. If the endomorphism algebra End”(A) is a totally
real number field, a totally definite quaternion algebra or a CM field, then the Albert clas-
sification [Mum08| Theorem 2 (p.186)] implies that there is a unique positive involution
on End’(A). Thus, the Rosati involution associated with any line bundle must be equal
to this unique positive involution. Hence, this proves that in those cases the constants
ap(f),af(f) do not depend on D.

Since all the eigenvalues of p,(f'f) are real and non-negative,

tr(pa(f1f)) =1+ ... + g > max{a, ..., .} = af(f)

so we also have the following consequence.

Corollary 2.39. Fix an abelian variety A defined over Q with an ample symmetric divisor D.

Then, for every endomorphism f : A — A, we have that

hap(f(P)) < tr(pa(f1f)) - hap(P)

for every P € A(Q).

2.6.3 Height bounds for isogenies between abelian varieties

We can now generalize Theorem to isogenies between different abelian varieties. As
before, it is straightforward to see that the ratio h B0y (0(P))/ h A,D; (P) must be bounded

for non-torsion points P € A(Q) (see for example [Mas84, Lemma 16] for the upper

bound). The following result will make this bound explicit.
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Theorem 2.40. Let A, B be two abelian varieties defined over Q and consider two ample sym-
metric divisors Dy, Dy on A and B, respectively. Let also ¢ : A — B be an isogeny. Then there

are explicit constants 0 < vy < 7y, such that

Y1 - ha,p, (P) < hppy ($(P)) < 72 - ea,p, (P)
for every P € A(Q).

Proof. If m,m are the projections of A x B onto A and B respectively, we consider the
divisor D = 7i Dy + 75D on A x B, which is again ample and symmetric.

By the functorial properties of the canonical height, we have that

haxp.0(P,Q) = haxpxip, (P, Q) + haxpxs 0, (P, Q) = hap,(P) + hp p,(Q)

for every (P, Q) € (A x B)(Q).
Let also f be the endomorphism of A x B defined as f(P,Q) = (O, ¢(P)). We can
then apply Theorem to get that

hp.0y(6(P)) = haxp.p(f(P,Q))
< ab(f) haxpp(P.Q) = ab(f) - (han,(P)+hen,(Q)).

Since this inequality holds for arbitrary P € A(Q) and Q € B(Q), we can choose Q = Op

and thus we have
hp.py($(P)) < ab(f) - hap, (P)

so that we can choose 72 = a,(f). Note that this constant is the best possible, in light of
Theorem 2.33]

For the lower bound, let e(¢) be the exponent of the finite group ker ¢, i.e. e(¢) is the
smallest positive integer n such that [n]P = O4 for every P € ker¢. Then, by [BL04,
Proposition 1.2.6], there exists a unique isogeny v : B — A such that ¢) o ¢ = [e(¢)] 4 and
¢ o 1p = [e(¢)] 5. We then apply Theorem 2.33|to the endomorphism g of A x B such that

9(P,Q) = (¢¥(Q),Op) in order to get

ha.p, ($(Q)) = haxp.p(9(P,Q))
< ab(9) - haxp,n(P,Q) = ap(9) - (hap, (P) +hp,p,(Q)) -

As before, this implies that
ha,p, (4(Q)) < af(g) - hp,p,(Q)

for every Q € B(Q). Then, for each P € A(Q) we can choose Q@ = ¢(P). Thus, the
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inequality above becomes

o~

e($)* - ha,p,(P) = hap (¢ 0 $)(P)) < a(9) - hip, 0, (¢(P))

since D; is symmetric. Therefore, we can take vy, = §(+¢s()g2) O
D

Applying this theorem with B = A and ¢ = [1] the identity gives the following
comparison of canonical heights defined by different divisors (see also [HS13, Exercise

B.3] for a slightly more general but ineffective statement).

Corollary 2.41. Let A be an abelian variety defined over Q and consider two ample symmetric

divisors Dy, Do on A . Then there are explicit constants 0 < 1 < o such that

Y1 - hap, (P) < ?LA,DQ(P) <7 ‘EA,Dl(P)

for every P € A(Q).

Lastly, we consider the special case g = 1. Given an elliptic curve E, a symmetric
ample divisor D and an endomorphism f € End(E), we clearly have a,(f) = af(f) =
deg f, since fT = f. Thus, Theoremreduces to the well known identity D ep(f(P)) =
deg f - h E,p(P) (see for example Section 3.6 of [Ser97]).

However, for elliptic curves we may strengthen Theorem [2.40} getting again an iden-
tity instead of an inequality. We prove this using a different method from the one used

before.

Proposition 2.42. Let E1, Ey be two elliptic curves defined over Q, D1, Do be two ample sym-
metric divisors on By, Es, respectively, and f : By — By be an isogeny. If we denote by hp, p,

and h Eo,D, the canonical heights defined by the divisors Dy and Do, we then have

_deg Dy

— ~deg f-h P
Tee D deg hup,(P)

hisa, 0, (f(P))

for every P € E1(Q).

Proof. Let a = deg D5 - deg f and b = deg D;. Then, we have
deg(aD; — bf*Dsy) = a-deg Dy — b-deg f - deg Dy = 0.

So the divisor aD1 — bf*Ds on Fj is nef. As noted in Remark the canonical height

associated to a nef symmetric divisor is nonnegative, therefore

a-hpy.p (P) = b g, py(f(P)) = hpyapy (P) = Ty, (P)

= hpy aDy—b-pDy(P) = 0
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implying that

~ deg Dy
P)) <
hEQaDQ(f( )) —_ deng

since ample divisors on curves have positive degree [Har77, Corollary 3.3].

-deg f - hg, p,(P)

Similarly, deg(bf* D2 — aD;) = 0, so that the same argument gives

S deg Dy

deg f-h P
= degD1 egf E1,D1( )

?LE27D2 (f(P))
concluding the proof. O

Remark 2.43. Since any ample symmetric divisor on an elliptic curve is linearly equivalent
to nO + T, where O is the identity element, n is a positive integer and 7" is a 2-torsion
point, one can also prove Proposition[2.42]more directly, by explicitly computing the pull-
back f*(nO +T) (see for example [Fer24) Proposition 2.3] for the special case D; = 3(0y)
and Dy = 3(02)).
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Chapter 3

Unlikely intersections in families of

elliptic curves

3.1 Introduction

Let m and n be positive integers. Denote by E the elliptic curve with Legendre equation
Y2Z = X(X - Z)(X — \2)

and consider this as a family of elliptic curves Ey, — Y(2) = Al \ {0,1}. With a slight
abuse of notation, we will denote by EY' the m-fold fibered power E\ Xy (g ... Xy (2) E),

which defines another family E{* — Y'(2). In this chapter we will work with the product
EY' x By ==Y (2) x Y(2).

Here, £, — Y (2) is the Legendre family with parameter .

Take an irreducible curve C C EY' x E}, defined over a number field k, not contained
in a fixed fiber. Then, for each point c € C, let 7(c) = (\(c), u(c)) € Y (2) x Y (2), where A
and p are the coordinate functions on Y (2)2. Also, cinC defines m points P (c), ..., Py (c)
on the elliptic curve ) and n points Q1(c), ..., Qx(c) on the elliptic curve E,, ). Let
Ry and Ry denote the generic endomorphism rings of £, and E,, when restricted to C,
respectively. In general, these are equal to Z, except in the case where one of the elliptic
curves is constant on C and has complex multiplication. For example, if A = A is constant
on C and E), has complex multiplication, then R; is strictly larger than Z.

We will assume that ) and E,, are not generically isogenous on C and that the P;’s
are linearly independent over R; and similarly for the @;’s. This is of course equivalent to
saying that there are no generic non-trivial linear relations between the P;’s and the );’s.
Another way of rephrasing this is to say that C is not contained in a proper subgroup

scheme of EY* x E}} — Y(2) x Y(2), again assuming that £ and E,, are not generically
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isogenous on C.

We define the map

J:Y(2) —Y(1)=A!
(A2 —A+1)°

A — 28
AR 12

which sends A to the j-invariant of E,. With a slight abuse of notation, we will also

denote by .J the map Y (2)? — Y (1)? obtained by applying J component-wise.

Definition 3.1. Let C C A2 be an irreducible curve and let X, Y be the coordinate func-
tions on A2. We say that C is asymmetric (see [Hab10]) if deg(X|c) # deg(Y|c). Here, by
convention, we set the degree of a constant map to be 0.

IfC C EY' x E}} — Y (2) x Y(2) is an irreducible curve, we say that C is asymmetric

if the curve C = (J o 7)(C) C A? is asymmetric.
We are now ready to state the main result of this chapter.

Theorem 3.2. Let C C EY' x E! be an irreducible asymmetric curve defined over Q not contained
in a fixed fiber, and define P;, Q); as above. Suppose moreover that Ey and E,, are not generically
isogenous on C and that there are no generic non-trivial relations among Pi, . .., Py, on E) and
among Q1,...,Qn on E, with coefficients in Ry and Ry, respectively. Then, there are at most
finitely many ¢ € C(C) such that there exist an isogeny ¢ : E, ) — Exc)and (a1, ..., amin) €
End(E) )™ \ {0} with

a1Pi(c)+ ...+ amPpn(c) + ami10 (Q1(c)) + ... + amand (Qn(c)) = O.

Notice that this theorem is a special case of the Zilber-Pink Conjecture. In combi-
nation with the results of [BC16], [BC17], [Bar19], and [HP16], and including the case
in which one factor has complex multiplication and a linear relation holds among the
points on the other factor (which will be addressed in future work), it yields a proof of
the conjecture for asymmetric curves in EY* x E} defined over Q. For an account on
the Zilber-Pink conjecture and other problems of Unlikely Intersections, see [Zan12] and
[Pil22].

Remark 3.3. Notice that if £ and E,, are generically isogenous, then C = Yy(NN) (for some
N > 1) which is not asymmetric, since the modular polynomials are symmetric (see sub-
section 3.2.1), and therefore have equal degree in both variables. Thus, in principle, the
assumption that £\ and £, are not generically isogenous could be removed from the the-
orem. However, in view of the Zilber-Pink conjecture, we expect that the theorem should
remain valid even without the asymmetry assumption. For these reasons, in anticipation
of a possible generalization of this result beyond the asymmetric setting, we prefer to

leave the statement as it is.
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Depending on 7(C) C Y (2)?, we can distinguish three cases:
(i) the coordinate functions A, iz on C are both non-constant;

(ii) (exactly) one between X\ and p is constant and the associated elliptic curve is not
CM;

(iii) (exactly) one between A and p is constant and the associated elliptic curve is CM.

For each ¢ € C(C), let p(c) € C be such that End(Ey()) = Z [p(c)].

In case |(i), by a theorem by André [And98], there are only finitely many ¢ € C(Q)
such that E ) and E,(¢) both have complex multiplication. So, recalling that isogenous
elliptic curves have the same endomorphism algebra, we can discard those finitely many
points and assume that p = 0 and a € Z™" \ {0}.

Similarly, in case[(ii), we can assume without loss of generality that A = ¢ is constant
with Ey, not CM. Therefore, there are no points ¢ € C(Q) such that £ and E,,) both
have complex multiplication, so we can take p = 0 and a € Z™*" \ {0} in this case as
well.

In case we can assume again that A = )\ is constant. However, in this case there
are infinitely many points ¢ € C(Q) such that E) = E), and E,,) are both CM, so we
cannot simplify our hypothesis as before. On the other hand, since X is constant, we can
choose p to be a generator of End(E),) = Z[p].

Our proof of Theorem (3.2 follows the general strategy first introduced by Pila and
Zannier in [PZ08] and later used, among the others, by Masser and Zannier [MZ10),
MZ12|] and by Barroero and Capuano [BC16| Bar19, BC17, BC20]. In what follows, we
sketch the argument only in case the proofs of cases [(ii)| and rely on the same
strategy, although their implementation requires additional technical refinements.

Since the elliptic curves F) and £, are analytically isomorphic to the complex tori
C/A;, and C/A,,, where A, = Z + Zr, with 7 in the complex upper half-plane H, we can
consider the elliptic logarithms z; ..., z,, of Pi,..., P, and wy, ..., w, of Q1,...,Qy, and
define a uniformization map (71, 21 . . . , Zm, 72, Wi, . . ., Wy) = (A, P1, .oy Py b, Q1 - -+, Qn)-
By a work of Peterzil and Starchenko, after restricting to a suitable fundamental domain,
this map is definable in the o-minimal structure Rap, exp, s0 the preimage of C is a defin-
able surface S.

Let C' be the subset of C we want to prove to be finite. Then, the points ¢y € C’ corre-
spond to points on S lying on subvarieties defined by equations with integer coefficients.
We then use a result by Habegger and Pila, which implies that there are <« 7 points of S
lying on the subvarieties with coefficients bounded in absolute value by 7', provided that

the z; and the wj; are algebraically independent over C(rq, 72).
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We then use a result by Habegger [Habl0] for asymmetric curvesﬂ giving height
bounds for A(cy), p(co), the Pi(co) and the Q;(co). By a result of Masser [Mas88], these
bounds imply that the coefficients a1, ..., ay,+n of the linear relation between the m + n
points

Pi(co), -+, Pulco), 9(Q1(co)), - - -, #(Qn(co))

can be taken to be bounded by a constant times a positive power of Dy = [k(A(co), p(co)) : k].
Moreover, all Galois conjugates of ¢y are still in C’, so that we have at least D points on
S lying on the subvarieties with coefficients bounded in absolute value by some positive
power of Dy. Combining this with the previous bound, we get that Dy is bounded and

therefore the claim of the theorem, by Northcott’s theorem.

Remark 3.4. Let C' C EY" x Ey be an irreducible curve not contained in a fixed fiber,
not necessarily asymmetric, and define P;, Q; and 71, 21, . . ., Zm, T2, W1, . . . , Wy, as above
(see also Section for more details). Assume also that £y and E,, are not generically
isogenous on C' and that there are no generic non-trivial relations among P, ..., P, on
E\ and among @1, ..., Q, on E, with coefficients in ?; and Ry, respectively.

Then, in case|[(1)|let ¢ = 0, while in case [(ii)] and let £ > 0 be the greatest integer
such that there are a; ; € End(E),) and ]5j € F\Q),i=1,...,mand j = 1,...,¢,such
that the vectors a; := (a1,5,...,am,), for j = 1,...,¢, are End(E),)-linearly independent
and

a1;Pi(c) + ...+ m;Pn(c) = P;

for every c € C. In particular, the assumption that there is no generic non-trivial relation
among the P; and the assumption on the vectors ay,...,a, implies that ]51, e ,]Sg are
End(E),)-linearly independent. Up to reordering the P;, we can then assume that the

matrix (a; ;)i j—1,.... has maximal rank. Hence, we can consider the isogeny
. m mn m mn
¢:EY, xE, — E\, X E,

m m
(P17~--7Pm7Q17---aQn)’_> <Zai,lpia'--7Z&i,fpivpf+17'"7Pm7Q17"'7Qn>
i=1

i=1

which sends (P,Q) € C to (ﬁl, o Py Pryq, . , P, Q) € ®(C). Note that the maxi-
mality of ¢ also implies that Py, ..., P, are generically End(E),)-linearly independent

modulo constants, i.e. there is no relation of the form
ap41Prii(c) + ...+ amPn(c) = P

with ag41, ..., an, € End(E),) not all zero and Pe E),(Q), that holds for every c € C.

!This is the only step of the proof where we use the assumption on the asymmetry of C, see also remark

ES
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Notice that if C satisfies the hypotheses of Theorem then ®(C) satisfies them as
well, and vice versa. Moreover, as the restriction of ® to any fiber is again an isogeny,

images and preimages under ® of algebraic subgroups of a fiber are again algebraic sub-
groups. This implies that Theorem holds for C if and only if it holds for ®(C).

Therefore, up to applying the isogeny ®, we will always assume that on the (asym-
metric) curve C that we are considering in Theorem Py, ..., P, are constant and

End(E),)-linearly independent, as above.

Remark 3.5. T am grateful to Gabriel Dill for pointing out that cases|(ii)|and can also
be deduced from Theorem 1.2 in [Dil21]. Continuing with the notation introduced in the
previous remark and using the notation from [Dil21], take Ay = Ef\’é_“”, A= E/’\?z_f x By
and I' = (I'9)™ %", where Ty is the divisible hull of the subgroup of E),(Q) generated
by End(E),) - P1,...,End(Ey,) - P,. Then, if C is the projection of ®(C) onto A, A[Fl] nc
consists exactly of the points described in Theorem and, by [Dil21, Theorem 1.2], we
get that either this intersection is finite or that the generic fiber C¢ C C'is contained in the

translate of a proper abelian subvariety of A¢ by a point in
(Ag)tors + Tr(Ag) = ES’;‘)%(@) X (Eﬁ)tors-

However, the latter means that either @1, ..., Q,, are generically linearly dependent or
that there is a non trivial linear relation modulo constants involving Py, 1, ..., Py, con-

tradicting our assumptions.

We use Vinogradov’s < notation: for real-valued functions f(7) and ¢(T), we write
f(T) < g(T) if there exists a constant v > 0 such that f(T") < ~g(T) for all sufficiently
large T. When not explicitly stated, the implied constant is either absolute or depends
only on C and other fixed data. We use subscripts to indicate any additional dependence

of the implied constant.

3.2 Preliminaries

3.2.1 Isogenies and modular curves

Let E; = C/A; and Ey = C/A; be two elliptic curves defined over C. Up to homothety,
any lattice in C is of the form Z + Zt for some 7 in the upper half-plane H, and any two
such lattices define isomorphic complex tori if and only if the corresponding parameters 7
lie in the same orbit under the action of SL»(Z) on H by fractional linear transformations.
Therefore, we may choose 71,72 € H such that Ay = Z + Z7; and Ay = Z + Z7y, with 7
and 7 lying in the standard fundamental domain § C H for the action of SLy(Z). This
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domain is given by
1 1 1
5= {TEHZ || > 1,—5 < Re(71) < 2}\{7’6]1{[: |7 = 1,0 < Re(7) < 2}. (3.1)

In particular, the choice of 71, 72 € § ensures that the associated elliptic curves are uniquely
determined up to isomorphism.

Recall that for each isogeny ¢ : Ey — Es there exists a unique non-zero complex
number « such that «A; C Ap and ¢ corresponds to the multiplication-by-a map C/A; —
C/As.

Therefore, if F; and E; are isogenous, then there exists « € C\ {0} and integers

A, B,C, D not all zero (not necessarily coprime) such that

a-11=Amn+ B
a-1=Crn+D

thus
_ Amo+ B

= CTQ“‘D'

Moreover, the converse is also true. If 71,75 € Hand 7, = égig for integers A, B,C, D,

then there exists an isogeny ¢ : £y — E3 corresponding to oo = C'p + D.

More generally, we have an action of the group GLj (Q) (here + means that the ma-

trices have positive determinant) on the upper half-plane H which is given by

ar +b
ct+d

for M = (2%) € GL3 (Q). If M € Mat(Z, 2), we say that M is primitive if gcd(a, b, ¢, d) = 1.

We say that an isogeny ¢ is cyclic if ker ¢ is a (finite) cyclic group. Then it is known (see
[DS05, Section 1.3]) that any isogeny can be written as the composition of a cyclic isogeny
and a multiplication-by-n isogeny, for some integer n. In particular, cyclic isogenies £y —
E, correspond to relations 71 = M with M primitive. In this case, the degree of the
isogeny is equal to det M.

Recall also that the modular polynomials ®x(X,Y) € Z[X,Y] are the irreducible
symmetric polynomials parametrizing pairs of isomorphism classes of elliptic curves
with a cyclic isogeny of degree N between them [Lan87, Chapter 5]. In other words,
DN (j1,72) = 0 if and only if there exists a cyclic isogeny of degree N between the el-
liptic curves with j-invariants j; and jo. We then define the classical modular curve
Yo(IN) C A? as the plane curve defined by the equation ®x(X,Y) = 0.

Finally, the following result provides an effective bound for the size of the integers

A, B, C, D when the degree of the isogeny is fixed. It is a consequence of Theorem 1.1 of
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[Orr18] (see Section 1.A therein for details) and constitutes an improvement of Lemma
5.2 of [HP12].

Lemma 3.6. There exists an absolute constant ¢ > 0 with the following property: if By =
C/(Z + Zm), Ey = C/(Z + Z1y) are elliptic curves with T, € §, and there exists a cyclic
isogeny ¢ : By — Es of degree N, then there are integers A, B, C, D such that

. Am + B

AD - BC =N == =
¢ Tl Cro+ D

3.2.2 Uniformization

Let A be the quasi-projective variety in Y (2) x (P?)™ x Y (2) x (P?)" with coordinates
NXy: Y2y, [ X Y s Z ], (U c VLW [Uy 0 Vs W)
and defined by the n + m equations

Y27 = Xi(Xi — Zi)(Xi — AZ;) i=1,...,m
ViW; = U(U; = Wj)(U; — pWy) j=1...,n

Weset P; = [X; : Y, : Z;] and Q; = [U; : V; : W;| and we have an irreducible curve C C A
defined over a number field & such that the projection of A to Y (2) x Y(2) restricts to
rational functions A and p on C not both constant.

The aim of this section is to define a uniformization map for A, following closely the
exposition in [Pil09, pp. 2489-2491].

As said before, any elliptic curve over C is analytically isomorphic to a complex torus
C/A;, where 7 has positive imaginary part and A; is the lattice generated by 1 and 7,

with fundamental domain
Lr={z€C:z=x+T1y,z,y €[0,1)}.

The classical Weierstrass p-function p(z, A;) = p(z,7) associated to the lattice A;, is A,-

periodic and satisfies the following differential equation

(p(2,7))? = 4p(2,7)° = g2(7)p(2,7) — ga(7)

where p(z,7) = d%p(z,f) and g2(7), g3(7) are defined in [Sil09, Remark 3.5.1]. Then,
the zeros of the polynomial 4X? — go(7) X — g3(7) are exactly the values of g at the half-

am=p(37) am=e(Fr) amn=o(5).
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Note that the e;(7) are pairwise distinct (see [Sil09, Proposition V1.3.6] and [For51} Sec.
63]) and that the function e3 — e; has a regular square root on all of H. Therefore, we can

define

9(277—)_61(7) n 2 7) = @(Z,T)/
am—am " D= e —am)

5(2, T) =

Njw

so that we have the following relation

n(2,7)* = €(2,7)(E(z,7) = D)(E(2, 7) = L(7))

where
MT—Q@LEQE (3.2)

e3(t) —e(r)
This gives a parametrization of the Legendre family via the map (z,7) — (L(7), P(z,7)),
where
[§(z,7) im(z,7) 1] ifz & Ay
[0:1:0] otherwise

P(z,7) =

Finally, define the map ¢ : HxC™ xHxC" — A(C) sending (71, 21, - - - , Zm, T2, W1, - - . , Wy,)
to (L(m1), P(z1,71),...,P(2m,11), L(2), P(w1,2), ..., P(w,,T)). Since this map is not
injective, we would like to find a subset of the domain over which it is possible to define
a univalued inverse function of ¢.

By [For51, Sec. 70], there exists a finite index subgroup I' of SL(Z) such that L(y7) =
L(7) for every v € I'. Moreover, as a fundamental domain for the action of I' on H one
can take the union of six suitably chosen fundamental domains for the action of SLy(Z)
(see [For51, Fig. 48 and 49]). We will call this set B and define

F={(T1,21, -, Zm, T2, W1, ..., Wy) : T1,T2 € B,21,...,2m € Lo, W1,...,wy € L7, }.
Then, ¢ has a univalued inverse A(C) — Fp and we set
Z =9 1C(C)N Fs. (3.3)

Following Remark we assume that P, = ]51, Py = 1513 are constant on C, so that
Z consists of points of the form (71, Z1, ..., 2, 2041, - - - » Zm, T2, W1, . . ., Wy), Where Z; is the
(constant) elliptic logarithm of the constant point P;.

Having described the uniformization of A, we now turn to a key result of functional
transcendence that will play an essential role in our arguments. Let C be the subset of the
smooth points of C(C) that are not ramified points of 7. In this way, the set C(C) \ C
consists only of finitely many algebraic points of C.

Fix a point ¢, € C and let D., C C be a small open disc containing c,. Let t, =

90|}18 (cx). Then, there exists an open connected neighbourhood U, C Hx C™ xHxC" of t,
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such that p(U,) = De,. Thus, 7, 21, ..., Zm, T2, w1, . . ., w, are well-defined holomorphic
functions (possibly constant) on U, and, with a slight abuse of notation, we consider them
as holomorphic functions on D, .

With these definitions, we have the following transcendence result.

Lemma 3.7. The functions z¢11, . .., Zm, W1, . . . , Wy, are algebraically independent over C(ry, )

on De,.

Proof. In case |(i)| we can apply Corollary 2.5 from [BC17] (which is based on a result by
Bertrand [Ber(9]).
In case|(ii)|and notice that our assumption on C imply that

CccC {(151,...,15@)} X E;ré_g x EJ.

Letalso F' = C (72) (note that F' = C(7, 72), since 7 is constant in these cases) and assume

by contradiction that
tr.degp B (2041y -y Zm, Wi, .. wy) < m+n— L.
Then, if z1,...,%, € L;, are elliptic logarithms of the constant points ]51, cee f)g, on C we
must have
tr.degpF (21, ooy 20, 2041y -« oy Zmy W1y« + vy W) =

tr.degpF (2041y -y Zm, W1, ..., wy) < m~+n — L.

Applying Theorem 7.1 from [Dil21] to C, we obtain a subvariety W C ET! x E}} containing
C. This subvariety is a translate of an abelian subscheme of EY’ x E} by the product of
a constant section of EY} (defined over Q) with a torsion multisection of E;. Moreover,
one has dim(W) <m +n — ¢.

Since Q1, ..., Q, are linearly independent by hypothesis, this implies that there are
Giet1 € End(Ey,) and Pryy € By (Q), i =€+ 1,...,m, such that @41 gi1,...,dme1 are
not all zero and

g1 041 P01 + o+ A1 P = Pr

contradicting the maximality of £ and proving that

tr.degpF (2041y .y Zm, W1, ..., wy) =m+n — L.

3.2.3 Heights

Let h denote the logarithmic absolute Weil height on PV, as defined in Section [2, and, if

« is an algebraic number, define (o) = h([1: a]). Define also the multiplicative Weil
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height as H(P) = exp(h(P)).
For an elliptic curve E defined over Q and a point P € E(Q) C P%(Q), we also have
the Néron-Tate height h, defined as follows (see also [Sil09, VIL.9)):

n—oo

(P) = lim 4inh(2np).

By Example we know that h is the canonical height associated with the divisor 30,
so Proposition implies that

ha(¢(P)) = deg ¢ - by (P) (3.4)

for any P € E;(Q), where ¢ : E; — E, is any isogeny between the two elliptic curves E;
and E», defined over Q and El and 77/2 are the Néron-Tate heights on F; and E», defined

as above.

Using the same notation as in the previous section, we have that if ¢ € C(Q), then
standard properties of heights (see [HS13, Theorem B.2.5]) imply that, if A and p are both

non-constant, we have
h(Pi(c)) < h(A(c))+1 and h(Qj(c)) < h(u(c))+1 (3.5)

foreveryi=/(+1,...,mand j = 1,...,n. In case[(i)] and [(iii)} if A = )¢ is constant, we
have that h(P;(c)) < h(u(c)) + 1, as we can use p as uniformizing parameter on the base

7(C) = {\o} x Al. Moreover, note that if C is defined over a number field k, we also have
[k(c) - k] < [k(A(c), p(c)) : A

Finally, we will also need another definition of height (from [HHP12, Section 7], see also
Definition .6/ for a generalization).

Definition 3.8. If o is a complex number, we define

H(a) =max{[p|,[q|} ifa="ecQ ged(p,q) =1

400 otherwise

Hi(a) :=

For (a1,...,ay) € CV, we also define Hy (a1, . ..,an) = max {H(a;)}.

3.2.4 Complex Multiplication

Givena )¢ € Y (2) such that F, has complex multiplication, we know that the associated
79 € Bis an algebraic number of degree 2, with minimal polynomial aX? +bX + ¢ € Z[X]
and discriminant Ay = b? — 4ac < 0. In this case, we know by [Lan87, Theorem 1, p. 90],
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that
End(E)\O) =7 [po] = O)\O

where pg = % € C and the isomorphism is given by [Sil94, Proposition IL.1.1]. Us-
ing this proposition and with a slight abuse of notation, we will identify endomorphisms
with the corresponding complex number.

By Theorem I1.4.3. of [Sil94],

[Q(jo) : Q] = cl(Oy,)

where j is the j-invariant of E), (which is algebraic by [Sil94, Proposition 11.2.1]) and
cl(Oy,) is the class number of O,,.
Moreover, a theorem of Siegel in the form of Theorem 1.2 of [BreOl] gives us the
estimate
[A0l7™ < cl(On) < 0]

so that, in particular, we have |A¢| < [Q(jo) : Q]°. Finally, using Equation (3.4) and the
fact that the endomorphism pg has degree (A% — Ay) /4, we get that

h(poP) < |Aol* R(P) < [Q(jo) : Q° h(P) < [Q(No) : QI° h(P) (3.6)

for every P € E,\O(@).

3.3 O-minimality and definable sets

In this section we recall the basic properties and some results about o-minimal structures.
For more details see [vdD98] and [vdDM96].

Definition 3.9. A structure is a sequence S = (Sy), N > 1, where each Sy is a collection
of subsets of R" such that, for each N, M > 1:

¢ Sy is a boolean algebra (under the usual set-theoretic operations);
e Sy contains every semi-algebraic subset of RY;
e if Ac Syand B € Sy, then A x B € Sy,

e if A € Sy, then 7(A) € Sy, where 7 : RMHN 5 RM g the projection onto the

tirst M coordinates.
If S is a structure and, in addition,
* S consists of all finite unions of open intervals and points

then S is called an o-minimal structure.
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Given a structure S, we say that S C RV isa definable set if S € Sn.

Given S C RY and a function f : S — RM, we say that f is a definable function if its
graph {(x, Y ERNxRM iz S y=f (:1:)} is a definable set. One can easily prove that
images and preimages of definable sets via definable functions are still definable.

Let U C RM*N Forty € RM, we set Uy, = {x eRN: (to,z) € U} and call U a family
of subsets of RY, while Uy, is called the fiber of U above ty. If U is a definable set, then we
call it a definable family and it is easy to prove that the fibers Uy, are also definable.

Proposition 3.10 ([vdDMO96]|, 4.4). Let U C R x R be a definable family in a fixed o-
minimal structure S. Then, there exists an integer n such that, for every to € RM, Uy, has at

most n connected components.

While there are many examples of o-minimal structures (see [vdDM96]), in this chap-
ter we will work with the structure Ranexp (see [Pil22, Chapter 8] for details about this
structure), which was proved to be o-minimal by van den Dries and Miller [vdDM94].

For a family Z C RM x RN = RM+N gnd a positive real number 7" define

7@ 1) ={(s.») € Z:y € Q" Hi(y) < T}

where H;(y) is the 1-polynomial height defined in the previous section and let 71, w2 be

the projections of Z to the first M and last /N coordinates, respectively.

Proposition 3.11 ([HP16], Corollary 7.2). Let Z C RM*N be q definable set. For every
e > 0 there exists a positive constant ¢ = ¢(Z, ) with the following property. If T > 1 and
|m2(Z~(Q,T))| > cT¢, then there exists a continuous definable function ¢ : [0,1] — Z such
that:

1. the restriction (g 1 is real analytic (since Ran, exp admits analytic cell decomposition);

2. the composition 7y o § : [0,1] — RM is semi-algebraic and its restriction to (0,1) is real

analytic;
3. the composition mg 0 6 : [0,1] — R¥ is non-constant.

Lastly, we want to prove that the set Z defined in is definable in Ry, exp. In the
following, definability will always be considered in Ry, cxp, and we say that X C cN
is definable if the set {(Re(z1),Im(21),...,Re(zn),Im(zn)) : (21,...,25) € X} C R?V is
definable. Similarly, a function f : X — C is definable if and only if Re(f) and Im(f) are
both definable.

Let D be the usual fundamental domain for the action of SLy(Z) on H, then the restric-
tion of p(z,7) to {(z,7) : 7 € D,z € L;} is definable by work of Peterzil and Starchenko
[PS05]. Therefore, p(z,7) is definable even if restricted to {(z,7) : 7 € vD, z € L;}, for
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any fundamental domain 7D for SLy(Z). Since B is the union of six such fundamental
domains, we have that p(z, 7) is also definable when restricted to {(z,7) : 7 € B,z € L.}.
Thus, the uniformization map ¢, defined in the previous section and restricted to Fj, is
definable. Since C(C) is semi-algebraic and Fg is definable, we get that Z = ¢~1(C(C)) N
Fp is definable.

3.4 The main estimate

We continue with the notations established in the previous sections and, for every 7" > 1,
define the set

~ ~ 1
Z(T):{(Tl,Zl,.--,Z£,2£+1,...,Zm,7'2,w1,--.,wn)EZ:‘7'1,‘TQ’ST,IHI(TI)ZT,
. A + B
dA,B,C,D e ZnN|[-T,T th AD — BC #0 =
y L2y Ly S [ ) ] W1 ;é y T2 07'1 +D7
= (a17 ey A, b1, 7bm+n) € Z*"*" with (a£+1 +boy1p, -5 mgn + bm—i—np) # 0,

max |a;|, |b;| < T and

J4 m n
Z(ai +bip)Z; + Z (a; + bip)zi + (Cm1 + D) Z(amﬂ- + bt jp)w; € Z+ Zﬁ}

i=1 i=0+1 J=1

where Z is the set defined in (3.3), Z1, ..., Z¢ are the elliptic logarithms of the constant
points Pi,...,P;and pis either 0 in case |(i)| and or a fixed quadratic integer in case
(i)

The goal of this section is to prove the following result.

Proposition 3.12. Under the hypotheses of Theorem 3.2} for all ¢ > 0, we have #2Z(T) <. T¢,
forallT > 1.

To prove this, we will apply Proposition to the definable set W consisting of

tuples of the form

(a17"‘7am+n7517"')5’m+n)A7BvcaDa€17£27

Cls 01, T1, Y15 s Tty Yo To 1, Yot 1s -« - > Tomy Y G2 02, U1, V1,5 -y U,y Up)
in RZm 2016 R2Zm+2n+4 gatisfying the following relations:
(o1 + Bet1ps - - Qmn + Bngnp) #0 AD—=BC#0  C(G1+61i) +D#0
(G + 011,21 + 91, ..., o + Yol, Tor1 + Yorad, - oy T + Ymd, G0 + 021, ug + v1d, .. up +opi) € 2

(C(¢y + 013) + D) (Co 4 621) = A(CL + 61i) + B
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l m
Z(O‘p + 5129)(51) + ypi) + Z (aq + 5qﬂ)($q + yqi>
p=1 q=0+1
+ (C(Cl + eli) + D) Z(am-i-r + Bm-i-rp)(u?" + vri) = fl + 52((1 + eli)

r=1

where i is the imaginary unit. In particular, we consider for each 7' > 1

WN(Q7 T) = {(041, .- '7UTL) eW: Hl(Oél, e 7am+n7ﬁla e ,,8m+n,A,B,C,D,§1,§2> < T}

where we recall that Hi (o, . .., &) is finite if and only if (as, . .., &) € Q¥ +2n+6,

Let 71, w2 be the projections on the first 2m+2n+6 and the last 2m+2n+-4 coordinates,

respectively.
Lemma 3.13. For every e > 0, #my (W™(Q,T)) <. T, forall T > 1.

Proof. Fix € > 0 and let ¢ = ¢(W, ¢) be the constant given by Proposition Suppose
also that #me (W™~ (Q,T)) > ¢T* for some T' > 1.

Then, by Proposition 3.1} there exists a continuous definable function ¢ : [0,1] — W
such that its restriction to (0, 1) is real analytic, §; = 71 04 : [0,1] — R?>™ 276 jg semi-
algebraic and d; = m 06 : [0,1] — R2m+2n+4 ig non-constant. Thus, there exists an
infinite connected J C [0, 1] such that d;(.J) is contained in an algebraic curve and d5(.J)

has positive dimension.

Consider the coordinates

al?"‘7am+n7517"')5’m+n)A7B707Da€17£27

CLyO1, T, Y1, o Ty Yoy T 1, Yot 15 - -+ s Ty Yy G2, 02, U1, V1, - oo Uy, Up

as functions on J and define
Ti = G + 04, Zp = Tp + Ypl, Zq = Tq + Ygl Wy = Uy + vpi

withi=1,2,p=1,...,0,¢g=4+1,....,mandr=1,...n.
On J, the functions av, . . ., Qungn, B1s - - - B, A4, B, C, D, &1, & satisfy 2m +2n 46 —

1 = 2m + 2n + 5 independent algebraic relations over C (because they are functions on
an algebraic curve). Since (41 + Be11p; - - -, Umin + Bm4np) # 0 and by the relations

L m n
Z(ap + Bpl))gp + Z (aq + qu)zq +(Cm + D) Z(am+r + Biarp)wr = &1 + &1
p=1 q=0+1 r=1

(CTl—‘y-D)TQ :AT1+B
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it follows that the 2m + 2n + 6 + (m — £) + n = 3m + 3n + 6 — ¢ functions

a17"')am+n7/61)"'7ﬁm+n)A7B707D7§17€27Z€+17"')Zmawh"-)wn

satisfy 2m+2n+5+2 = 2m+ 2n+ 7 independent algebraic relations over F' = C (71, 72).
Finally, let

W = (Tl(J),gl,. . .,gg,Zg+1(J),...,Zm(J),TQ(J),U)l(J),.. .,wn(J)) C Z,

which has positive dimension since d2(.J) has positive dimension, and consider 7, z/41,
-y Zm, T2, W1, . . . , Wy, as holomorphic functions on (W) C C(C). The algebraic relations

found above can be analytically continued to an open disc D in o(W) N C. Therefore,
trdegp F' (20415 -+ Zmy Wi,y ..oy Wy) <3Mm+3n+6—0—2m+2n+7)=m+n—~0—1

which implies that 2,41, ..., 2y, w1, ..., w, are algebraically dependent over F' on D and

thus, by Lemma we get a contradiction, proving the proposition. O

Proof of Proposition If (71,21, o0y 20, 20415+ oy Zm, T2, W1, .. ., wy) € Z(T), then there
are integers a1, . .., Gmin, b1, - . ., bmin, A, B, C, D with absolute value bounded by 7" and

integers &1, 2 such that

(o1 + Bes1ps -+ Omgn + Bmnp) #0  AD—BC #0  Cri+D#0

(Cri+ D) =Am + B

4

m n
Z(ai + bip)gi + Z (ai + bip)zz CTl + D Z am+j + bm+jp)wj =&+ &
i=1 i=(+1 J=1

And since |7-1|7 |T2|7 |A|7 ’B|a |C|7 |D‘? |CL1|, SRR |am+n|7 |b1| yere |bm+n| < T and 2pazq € ETl'

wy € L7, we have that

4 m n
Z(ap + bpp)Zp + Z (ag + bgp)zq + (C1 + D) Z Uty + bmrp)wy
p=1 g=t+1 r=1

l m n
<> (apl +10pl oD 1Zp] + D (lagl + [bgl p]) 12zq] +[CT1 + DI Y~ (lamer| + [brasr| |]) |
p=1 q={+1 r=1

< T -max{1,|n|} + (T -max {1,|m|}) - T - max {1, |m|} < T4

Therefore, we have

¢

m n
Z(ap +byp)zp, + Z (ag + bgp)zg + (Cm1 + D) Z Amtr + btrp) Wy
p=1 q={+1 r=1

&1 4+ &omi| = < Tt
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from which we deduce that |&| < T°, since Im(7y) > 7 and

T > &1 + &1 | > |Im(& + &om1)| = [Elm(m)| > KT‘

This implies that
&1 = |61 + Eam — Eomi| < &+ Eomi| + &2 - |m| « T+ T5 - T < TC.
Hence we get that

(a17' . 'aamJﬁhblv s 7bm+n>A7BaCaD7£1a€27
Re(r1),Im(71),Re(z1),Im(Z1),...,Re(Z),Im(Z;), Re(zp41), Im(2p11), - - ., Re(zm), Im(2p,),
Re(12),Im(72), Re(wy), Im(wy), ..., Re(wy), Im(wy,)) € W™(Q, IJTG)

for some positive constant v. Finally, consider the map

Z(T) — ma (W™(Q,vT?))

(11, ... wy) — (Re(m1), Im(71), ..., Re(wy), Im(wy,)) .
Since this map is injective, the conclusion follows from Lemma O

3.5 Arithmetic bounds

Let C be as in Theorem [3.2|and let C’ be the set of points ¢ € C(C) such that there exists an
isogeny ¢. : E,c) = Ey) and a,b € Z™" with (ag41 + bey1p, - .., Gmin + bgnp) # 0

and
V4 m n
Z(ap + pr)Pp + Z (aq + qu)Pq(c) + Z(am+r + b p)Pe(Qr(c)) = O
p=1 q={+1 r=1

where p is 0 in cases|(i)]and (i)} and a fixed generator for End(E), ) in case|(iii)} Moreover,
we can also assume that ¢ is a cyclic isogeny.

Since C is defined over @, the curve C = (J o m)(C) is also defined over Q and thus,
for every ¢ € C', (J(\(c)), J(u(c))) € CN Un>1Yo(NV). As all the modular curves Yo (V)
are defined over Q, all the points (J(A(c)), J(u(c))) are algebraic, which implies that also
A(c) and p(c) are algebraic for every ¢ € C'. From this, it follows that C’ is a subset of
C(Q) and thus we can define, for every cg € C’, Dy := [k(A(co), pu(co)) : k], where k is the
field of definition of C.

All the constants appearing in this section depend only on C, the field £ and on the

integers m, n, unless otherwise stated.
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Lemma 3.14. Let ¢ € C' and let Ny be the minimal degree of an isogeny ¢c, : E,cy) — Ex(cy)-

Then, for every € > 0, there exist positive constants 1, v (depending on €) such that

h(A(co)), h(u(co)) <7D
N(] S ’)/QD(Q)Jrs.

Proof. Fix ¢y € C', and let Ny be as above. Note that an isogeny of minimal degree be-
tween two elliptic curves is necessarily cyclic, since otherwise it would factor as the com-
position of a cyclic isogeny and a multiplication-by-n map.
Therefore,
(J(A(eo)), I (1(e0))) € (€N Yo(No))(@)

Since C is asymmetric, we may apply [Hab10, Theorem 1.1] together with Propositionm
to deduce
h(A(co)), hlp(co)) < log(1+ No).

Next, by Théoréme 1.4 of [GR14b] , we have
9 2
No < Dj - max {hF(E)\(CO)), log(Dy), 1} ,

where hp(E)(c,)) is the (stable) Faltings height of E ). By Proposition 2.1 of [Sil86], one
has

hr(Exe)) < h (j(E)\(co))) + 1.

Since j(E)(c,)) is a rational function in A(co), Proposition gives
h (j(E,\(CO))) +1 < h(Meg)) + 1 < log(1 + Np) <, N
for every €; > 0. Moreover, for every ez > 0 we have log Dy <, Dy*. Hence
Ny < D2 - max {hF(EA(CO)), log(Do), 1}2 Cerey D222 N2,
Now fix e > 0. Choosing €; = g7;- and ez = § yields
Ny <. D3'e.
Finally, recalling that h(A(co)), h(p(co)) < log(1 + No) < N§, we conclude

h(A(co)), hp(eo)) <e Dy

for every e > 0. O
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Remark 3.15. Note that this lemma above is the only part of the proof where we need to
use the hypothesis that C is asymmetric, while all the other steps are true also for non-
asymmetric curves. Thus, if one was able to prove this lemma for an arbitrary C or any
of the Conjectures 21.20, 21.23 or 21.24 from [Pil22], then Theorem (3.2l would follow for
any C.

Lemma 3.16. Let co € C'. Then, there exist positive constants s, va, vs such that

~

h(Py(co)) <v3Dg foreveryg=~{+1,...,m

h(dey (Qr(c0))) < 74D foreveryr =1,...,n.

Moreover, the Py(co) and the ¢c,(Qr(co)) are defined over a field K O k(X(co), p(co)) with
(K : Q] < 45D3.

Proof. We use the same notation as in the previous proof.

Using work of Zimmer [Zim76| Theorem], the previous lemma (with ¢ = 1) and the
bounds (3.5), in case[(i)] we have

~

h(Pp(co)) < h(Pp(co)) + 76 (A(A(co)) + 1) <7 (h(A(co)) +1) < 72Do

while in case|(i1)] and [(iil)| we get the same estimate by

~

h(Pp(co)) < h(Py(co)) + 76 (h(u(co)) +1) < 37 (h(p(co)) + 1) < 72Do.

Similarly, E(Qr(co)) < v8Dy. So, by Equation and Lemma (again with e = 1),
we get that

Py (Qr(co))) < 78 NoDo < v3Dg

Lemma 7.2 in [BC16] implies that the P,(cp) and the @), (co) are defined over a field K of
degree < y9 D, over Q. Moreover, by [MW90, Lemma 6.1], ¢, is defined over a field K>
of degree at most 12 over k(A(co), it(co)), and thus [K» : Q] < 12Dy. Therefore, the points
beo (Qr(co)) are defined over the compositum K Ky which has degree < D3 over Q. [

Next, we show that for any ¢y € C’ we can choose “small” coefficients a; € Z for the

linear relation.

Lemma 3.17. For any ¢y € C', there exist a,b € Z™™ with (ap11 + beg1ps -+ Gman +
bm-i—np) 7é 0 and

y4 m n
Z(ap + bpp)Pp + Z (aq + qu)Pq(CO) + Z(am—i-r + bintrp) ey (Qr(co)) = O
p=1 q=0{+1 r=1
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and such that
max {|a;|, |bi]} < y10Dg"

for some positive constants 19, 11.

Proof. For cases|(i)|and we already saw that we can take p = 0 and therefore we can
choose b = 0. So we can apply Lemma 6.1 of [BC16] (which is in turn based on a result
by Masser [Mas88]), to the points P,, P,(cg) and ¢, (Q,(co)), using also Lemma and
the height bounds from the previous lemma.

In case we use again the above-mentioned lemma by Barroero and Capuano, this
time with the points P, pP,, P,(co), pPy(co), e, (Qr(co)) and poe, (Qr(co)), recalling that
by (8.6), we have that

h(pPy(co)) < D§ - h(Py(co)) < D

h(pde,(Qr(c0))) < D - ey (Qr(c0))) < D’

A priori, applying [BC16, Lemma 6.1] in cases |(ii)| and gives a,b € Z™*" with (a1 +

b1p, .-y Gmgn + byynp) # 0, but we claim that we cannot have (ap11 + bpr1p, - -« Gpn +
bm+np) = 0, otherwise it would mean that the constant points Py,..., P, are End(E),)-
linearly dependent, contradicting our assumptions. O

For the next lemma, let 71(c) = 7-1(@';1 (c)) € Bfor every ¢ € C(C) and similarly for
B
72(c), where ¢ is the uniformization map defined in Section

Lemma 3.18. There exist positive constants 11,12 such that for every cy € C' we have

|T1(co)|, |T2(co)| < y11D?

1

Im(7i(co)), Im(72(co)) > N pr

Proof. Let § be the usual fundamental domain for the action of SLy(Z) on H (defined in
(3.1)) and let 7 € §. Then, Lemma 1 in [BMZI3] implies that ¢>™™(") < 2079 + |j(r)|.
Hence, if |j(7)| < 2, then Im(7) < 5 log(2081) = v13. Equivalently, for every 7 € § such
that Im(7) > 13, we have |j(7)| > 2. So, if Im(7) > 713, we then get that

1 log (2081
Im(7) < o1 log (2079 + (7)) < o]

< m og |7(7)|.

Therefore, for every 7 € § we have Im(7) < max {1, log |j(7)|}.
Now, assume that 7(co) = M - 71, for some 71 € Fand M = (¢ Z) € SLy(Z). Then,

ar] +b\ _ Im(r}) Im(ry) :
cr{1+d> _ U < L <, max {1,log |j(7])[} .

I =1 =
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As the j-function is invariant under the action of SLs(Z), we have that
j(1i(co)) = j(M - 11) = j(71),

so that Im(7y(cp)) <, max {1,log |j(71(co))|}-
Furthermore, we have that j(71(co)) = J(L(m1(co))) = J(A(co)), where J(N) = 28%
and L was defined in (3.2). Since A(co) € Q \ {0, 1}, this implies that j(71(co)) € Q.

Then, using the inequality log |a| < [Q(«) : Q] h(«) for every non-zero a € Q, we get

log |j(71(c0))| < [Q(j(T1(c0))) : Q] A(j(T1(c0))) = [Q(J(A(co))) : Q] h(J(A(co)))
< [Q(Meo)) : Q] (h(A(co)) + 1) < Dj

by Lemma and Proposition Combining this with the previous bound gives
Im(71(co)) < v14(M)D3, for some positive constant y14(M) depending on M. Since B is
the union of finitely many translates of § by elements of SLy(Z), there are only finitely
many such M to consider. Thus, we have that Im(7(cp)) < y15D3, where 715 is an
absolute constant, and that |Re(71(cg))| < 1. Therefore, we get that |1 (co)| < D3.

For the lower bound on the imaginary part, first note that if 7 € §, then Im(7) > @

Again, assume that 71(co) = M - 7{, for some 7{ € Fand M = (¢ Z) € SLy(Z). Then,

ar| + b) Im(7y) - Im(7y)

Tm (1 (co)) :Im<CT{+d .

= > .
2 = 2 M 2
leri +d” — (lel + [d])? - max {1, |7{|} max {1, |77[}

From before we get that Im(7{) < max {1,log|j(r{)|} = max {1,log|j(mi(co))|} < D3,

)| < i. Hence,

—~

which implies |7{| < D, since 7| € § implies |Re(r

=~

Im(r; (co)) > L
m(7(C _— —_—.
PR pax {1, 72 T De

As before, we need to consider only finitely many choices of M € SLy(Z), so we have
that Im (7 (co)) > #, where the implied constant is absolute.
0

Similar arguments give the respective bounds for (cy). O

3.6 Proof of Theorem 3.2

We want to show that the set C’ (defined at the start of the previous section) is finite. Since
the map 7, : ¢ — (A(c), i1(c)) is finite-to-one, Northcott’s theorem together with Lemma
reduces the problem to bounding the degree Dy of A(c) and jx(c) over k.

Let cp € C’ and o € Gal(k/k). Notice that o(cq) € C'. Indeed, we have

i (Bxtote)) = (Botreny) = 7 (7(Me0))) = o (J (Me0))) = 0 (5 (Exteo)) )
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and an analogous identity holds for p(cp) in place of of A(cp). If Ny is defined as in
Lemma it follows that

PN, (j (E/\(J(Co))) ¥ (EM(U(CO)))) =0 (q’No (J (EA(cw) »J (Eu<co)))) =0,

so there exists a cyclicisogeny ¢, (cy) : Epu(o(co)) — Er(o(co)) Of degree No. Since deg o(de,) =
deg ¢pc, = No, we can take ¢ (c,) = 0 (Peg)-

Thus, as C is defined over k, we also have
o(Pp) =P,  Pylo(co)) =0 (Fy(co)),

Po(co) (@r(9(€0))) = ¢o(cq) (0 (Qr(C0))) = 7 (de, (@r(c0)))

foreveryp=1,...,4,g={(+1,...,m,r =1,...,n. Moreover, in Case we can assume
without loss of generality that the generator p of End(F),) is defined over k, so that
o(p) = p. Recall that we are using [Sil94, Proposition 11.1.1] to identify endomorphisms
with complex numbers. Furthermore, [Sil94, Proposition I1.2.2] guarantees that under

this identification the action of Gal(k/k) on these two objects is the same.

So, in all cases, we have:

m n

4
Z(ap + bpp)jjp + Z (aq + bgp) Py(o(co)) + Z(am—i—r + bm+7"p)¢a(00)(@q(p(c0)))
p=1 q=0¢+1 r=1

m n

l
= o( Y (ap+bpp) Pyt Y (ag+bep) Pylco) + D (amir + bimsrp)beg(Qr(c0))) = O

p=1 qg={+1 r=1

on E)(4(co)), Since the a; and b; are integers.

co)

Now, consider the point cp|_f1 (0(cp)) € Z with coordinates
B

g % ove g g ag g g
(T0 321, s 205 201 - 20, T WS, W)

(here the superscript o does not denote a Galois conjugate). By the previous equation

and lemmas and we have relations

l m n
Z(ap + bpp)zp + Z (ag + bgp)zg + (C777 + D7) <Z(am+r + bm+rp)w;7> €L+ Zr,
p=1 q=0+1 r=1

,  A°T7 4+ B°
T+ = -
2 cory 4+ D°

with (CL[+1 + bg+1p, ceo s Qptn + bm—l—np) 7é 0 and

1
max {|a;| , |bi|} <v10D{", 177|175 | < v1Dg, Im(77) Z’leﬁ
0
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and |A?],|B°|,|C?]|,|D?| < y16No < 717D§ by Lemmaand Lemma
So,
#),, (o(co)) € Z (7DF)

where v = max {’ym, Y11, 7%, 717} and 7 = max {n,4}.
There are at least [k(cg) : k] > [k(A(co), (o)) : k] = Dg different

g = = ag ag g g
(T0 200 ooy 20y 20410 s 2 T8 W, W)

in Z (yD(). However, applying Proposition with e = % gives a contradiction if Dy
is large enough. This proves that Dy is bounded and, consequently, Theorem 3.2}
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Chapter 4

Unlikely intersections in families of

abelian varieties

4.1 Introduction

Let S be a smooth, irreducible, quasi-projective curve, and let 7 : A — S be an abelian
scheme of relative dimension g > 1, both defined over Q. For any (not necessarily closed)
point s € S we denote the fiber of A over s by A,. Let O : S — A be the zero section of A
and consider an irreducible curve C C A, also defined over Q.

Recall that an irreducible component of a subgroup scheme of A is either a compo-
nent of an algebraic subgroup of a fiber or it dominates the base curve S. We say that a
subgroup scheme is flat if all of its irreducible components are of the latter kind.

We call A — S isotrivial if it becomes constant after a base change, i.e. A xg S’ =
AxgzS' for some finite base change 5" — S and some fixed abelian variety 4/ Q. Let Agx S
be the largest constant abelian subscheme of A — S, we say that a sectiono : S — A
is constant if there exists ayp € Ap(C) such that o is the composition of S — Ay x S,
s — (ap, s) with the inclusion of Ay x S into A.

The goal of this chapter is to further investigate the intersections of C with subgroup
schemes of A. In [BC20], Barroero and Capuano studied the intersections of C with flat
subgroup schemes of codimension at least 2 and proved that if C is not contained in a
proper subgroup scheme, then its intersection with the union of all such codimension
> 2 flat subgroup schemes of A is finite.

In the isotrivial case or if C is contained in a fixed fiber, this has already been addressed
by Habegger and Pila [HP16, Theorem 9.14], who proved the Zilber-Pink conjecture for
curves in abelian varieties defined over Q. Thus, our focus is instead on the case where
the abelian scheme A — S is not isotrivial and C is not contained in a fixed fiber.

In this chapter, we extend these results by considering the intersections of C with the

proper algebraic subgroups of the CM fibers of A, proving the following theorem.
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Theorem 4.1. Let S and A — S be as above and assume that A is not isotrivial. Let C C A an
irreducible curve defined over Q that is neither contained in a fixed fiber nor in a translate of a
proper flat subgroup scheme of A by a constant section, even after a finite base change. Then, the
intersection of C with the union of all proper algebraic subgroups of the CM fibers of A is a finite

set.

Since every algebraic subgroup of an abelian variety is a union of irreducible compo-
nents of the kernel of an endomorphism, the theorem can be restated as follows: under
the same assumptions as above, there are at most finitely many P € C(C) such that
A (p) has complex multiplication and there exists a non-zero f € End(A,p)) such that
f(P) = Ox(p).

In [Bar19], Barroero proved the same result in the case of a fibered power of an elliptic
scheme. Thus, Theorem4.T|can be viewed as a generalization of Barroero’s result to more
general abelian schemes.

The above theorem also proves a stronger partial version of Conjecture 6.1 of [Pin05b],
since Pink’s conjecture only considers algebraic subgroups of codimension at least 2 of the
fibers. As a matter of fact, Theorem {.1|is a particular case of the Zilber-Pink conjecture
for a curve in an abelian scheme, which is known to imply Conjecture 6.1 of [Pin05b] for
abelian schemes.

Our proof of Theorem |4.1|follows the well-established Pila-Zannier strategy, first in-
troduced in [PZ08] and later used, among others, by Masser and Zannier [MZ10, MZ12],
by Barroero and Capuano [BC16, Bar19, BC17, BC20] and in the previous chapter.

To implement this strategy, we first reduce the problem to the case of restrictions of

the universal family of abelian varieties over a quasi-projective curve in the moduli space
A, of principally polarized abelian varieties of dimension g. Using a result of Peterzil and
Starchenko, after restricting to a suitable fundamental domain, the uniformizing map of
the universal family is definable in the o-minimal structure Rapy, exp. Consequently, the
preimage of C under this map is a definable surface X.
Let C’ be the subset of C we want to prove to be finite. Then, each point P, € C’ correspond
to a point on X lying on a subvariety defined by equations with integer coefficients. We
then use a result by Habegger and Pila, which states that the number of points on X
lying on such subvarieties with coefficients bounded in absolute value by 7' is at most
< T¥, provided that the abelian logarithm of the generic point of C generates a field of
sufficiently large transcendence degree over the field generated by the period matrix.

We then use a result by Barroero and Capuano, based on an earlier result by Masser
[Mas88], to construct a linear combination of a specific basis of endomorphisms of A (p,),
with coefficients bounded by a constant times a positive power of [Q(F) : Q] and such
that P, lies in the kernel of this linear combination. In order to do this, we use the bounds

for the canonical height developed in Section Furthermore, since all Galois conju-
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gates of Py remain in C’, there are at least Dy points on X lying on subvarieties whose
coefficients are bounded in absolute value by some positive power of Dy. Together with
the previous estimate, this implies that Dy is uniformly bounded. By Northcott’s theo-

rem, this establishes the claim of the theorem.

Remark 4.2. Before proceeding, we note that if S C A is not a special curve (as explained
in Section we may always assume S C A,), then the André-Oort conjecture for A,
(proved by Tsimerman [Tsi18]) guarantees that only finitely many points s € S(C) corre-
spond to CM fibers A, , which in turn implies Theorem Hence, one may assume that
S = w(C) is a Shimura curve, though this assumption will not be used in the rest of the

chapter.

Remark 4.3. Observe that the Zilber-Pink conjecture would imply Theorem[4.T|even when
C is contained in a translate of a proper flat subgroup scheme of A by a non-torsion
section. Unfortunately, the functional transcendence results used in this chapter only

allow us to prove the theorem in the form stated above.

We use Vinogradov’s < notation: for real-valued functions f(7) and ¢(T"), we write
f(T) < g(T) if there exists a constant v > 0 such that f(7T") < ~g(T) for all sufficiently
large T. When not explicitly stated, the implied constant is either absolute or depends
only on S, A, g,C and other fixed data. We use subscripts to indicate any additional de-

pendence of the implied constant.

4.2 Preliminaries

For the basic results about abelian varieties we refer to Section 2.5.11

4.2.1 Moduli spaces, universal families and their uniformizations

Let g,n > 1 be positive integers and D = diag(dy, ..., d,), with d; positive integers such
that d; divides d;; for every i = 1,...,g — 1. We define A, p,, as the moduli space of
complex abelian abelian varieties of dimension g, polarization type D and with principal
level-n-structure. For each type D and n > 3, the moduli space A;p, is a fine moduli
space [MFK94, Theorem 7.9]. In other words, there is a universal family 7 : 2, p, —
Ay D n, which, like Ay p ,,, is defined over Q. For the rest of the chapter we will consider
A, p,n and Ay p ,, as irreducible quasi-projective varieties.

It is well-known (see for example Chapter 8 of [BLO4]) that AJ', |, the analytification
of Ay, p n, can be realized as a quotient of H, by a suitable finite index subgroup I'p ,, of
Spo,(Z), where

Hy = {Z € Mat,(C) : Z = Z', Im(2) > 0}
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and Spy,(Z) := {M € Matyy(Z) : M*JM = J} (here J := (_Og 109)) acts on H, by

A B B "
(c D)~Z_(AZ+B)(CZ+D) .

Remark 4.4. We will show in Section[4.3]that we can always reduce the problem to study-
ing principally polarized abelian varieties. Moreover, the choice of the level structure is
not important for our proof of Theorem [4.1] So, for the rest of the chapter, we fix D = 1,

and n = 3 and omit those indices from the notation when they are clear from the context.

Note that H, is an open subset, in the Euclidean topology, of

(g+1)
{M € Maty(C): M = Mt} ="
and that we can see Hj as a semialgebraic subset of R2”, by identifying a complex num-
ber with its real and imaginary parts. Furthermore, the quotient map w;, : Hy, — AZ" is
holomorphic.
Similarly, we have an holomorphic uniformization map for the universal family, given

by theta functions, u : H, x C9 — 217", such that the following diagram commutes
Hy x C9 —— A"
p{ lw
Hy —5— Agr

Now, we would like to find a subset of H, x C9 over which u is invertible.
By [Igu72, Section V.4], there is a semialgebraic set §, of H, which can be used as a

fundamental domain for the action of Sp,,(Z) on Hy. If I' is a finite index subgroup of

Spey(Z) and o1 = 1g4,09,...,0, is a complete set of representatives of its right cosets,
then
n
St = U 0; - 8g (4.1)
i=1

is called a Siegel fundamental domain for I' and can be used as a fundamental domain for
the action of I" on H,.

For a fixed 7 € Hy we have a principally polarized abelian variety A, = CY9/(Z9 +
779). In this case, let L; := {z € C9: z = u + Tv with u,v € [0,1)9} be the fundamental

parallelogram for the lattice Z9 4 7Z9. Moreover, let I' = I'p ,, as above and define
Fyg={(r,2) e Hy xCY: 7 €Fr,z € L }.

Then, the restriction of u to F; is finite-to-one. Consider a curve C C 2, as in Theorem
and set
Z=u"'C(C) N F,. (4.2)
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Finally, let S C A, be a smooth, irreducible, locally closed curve and let A = 2, x4,
S — S. Define the constant part (or Q(S)/Q-trace) of A — S as the largest abelian
subvariety Ag of the generic fiber A, which can be defined over Q (see also [Lan83a,
Section VIIL.3] for more details).

Let D be an open disc on C(C) and consider 7 and z as holomorphic functions on D.
The following functional transcendence result is a consequence of Theorem 7.1 of [Dil21]

(which is in turn based on a result by Gao [Gao20]).

Lemma 4.5. Let S, A, C and D as above and let F' = C(7). Under the assumptions of Theorem
we have tr.deg. pF(z) = g on D.

Proof. By contradiction, assume that tr.deg.F(z) < g. Then Theorem 7.1 of [Dil21]] im-

plies the existence of a proper subvariety W of 4, containing C and such that, over Q(95),
every irreducible component of W, is a translate of an abelian subvariety of .A,, by a point
in (Ay)
of a proper subgroup scheme by a point in A(Q), contradicting the hypotheses on C in
Theorem O

+ Ao(Q). This means that, up to finite base change, C is contained in a translate

tors

4.2.2 Heights

Let h denote the logarithmic absolute Weil height on PN, as defined in Chapter |2/ and,
if v is an algebraic number, define h(a) = h([1 : a]). Define also the multiplicative Weil
height as H(P) = exp(h(P)). More generally, if V' is a projective variety and D is a
divisor, denote by hy,p a Weil height on V associated to D (see Section[2.4).

For an abelian variety A defined over a number field and a divisor D, we also have the
Néron-Tate height & A,p, defined as in Theorem We also denote by hp(A) the stable
Faltings height of A (see [Fal83]), assuming that A has semistable reduction everywhere.
This assumption can always be ensured by passing to a suitable field extension.

Finally, we will also need another definition of height (from [HP12, Section 7]), which
generalizes the height defined in Definition 3.8

Definition 4.6. If d € Z>; and « is a complex number, we define the d-height of o as
Hy(a) := min {H([ao corag)) s ag ... ag) € PYQ) st ag + aja+ ...+ agad = 0}

where we use the convention minf) = +oo. For (ai,...,ay) € CV, we also define
Hq(a, ..., an) = max {Hg(o)}.

Note that Hg(ov,. .., ay) is finite if and only if o, ..., ay are all algebraic numbers

of degree at most d.
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Lemma 4.7. For any a € Q of degree at most d we have
Hy(o) < 2%H()? and la| <Vd+1-Hg(o).

Proof. Let f(z) = ap + a1z + ... + apz™ € Q[z] be a polynomial of degree n < d such
that f(o) = 0 and let m(z) € Z[z] be the minimal polynomial of « (so its coefficients
are coprime). Since in the definition of H;(«) we are considering the coefficients of f as
a point in a projective space, we may assume that the coefficients of f are integers with
ged(ag, ... an) = 1.

For every p € Clz] let M (p) denote the Mahler measure of p, as in [BG06, Section 1.6].
By [BGO06| Proposition 1.6.6],

M(my) = H() %U< F(a)d.

Moreover, [BG06, Lemma 1.6.7] gives

n
!fby:mMH%M~J%H§(Woﬂﬂﬁ§2mﬂﬁ§2ﬂﬂﬂ-
2
Since the coefficients of f are coprime integers, H([ao : ... : an]) = || f||,,- Hence

Hy(a) = min {|| ||, : f € Z[z] with coprime coefficients s.t. deg(f) < dand f(a) =0}

< |Imally < 29M(ma) < 29H (o)

which proves the first inequality.

For the second inequality, note first that [BG06, Proposition 1.6.6] implies |a| < M (f)
for any f € Z[z] such that f(«) = 0. Furthermore, by [BG06, Lemma 1.6.7], we also have
that M(f) < y/deg(f) +1-|fll,- Taking the minimum over all polynomials f € Z[x]
with coprime coefficients and deg(f) < d such that f(a) = 0 then yields the desired
bound |a| < Vd+1- Hy(a). O

4.2.3 Complex Multiplication

In this section, we recall the basic definitions and key facts about complex multiplication
for abelian varieties defined over fields of characteristic 0, which will be used throughout
this chapter. For further details on this topic, we refer to [Lan83b, [Shi98, Mil20].

Definition 4.8. A CM field K is a totally imaginary quadratic extension of a totally real
number field. That is, K has the form K = Ky(y/a), where K is a totally real field, i.e.,
a number field whose embeddings into C are all real, and a € K| satisfies the condition

that each embedding of K into C maps « to a negative real number.
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Definition 4.9. An abelian variety A of dimension g is said to have Complex Multiplication
(CM) if its endomorphism algebra End®(A) contains a commutative semisimple subalge-
bra of degree 2g over Q. We say that A has CM by the CM field K (of degree 2g) if there
exists an embedding K — End’(A).

Note that a simple abelian variety A has complex multiplication if and only if End®(A)
is a CM field of degree 2dim(A). In general, an abelian variety has complex multiplica-
tion if and only if each of its simple factors up to isogeny has complex multiplication.

If A is a simple CM abelian variety of dimension g, then End’(A) = K is a CM field
and there is a set ® = {¢1,..., ¢y} of complex embeddings of K such that ® U & is the
set of all complex embeddings of K and Tp(A) = [[_, Cy,, where Cy, is a 1-dimensional
C-vector space on which o € K acts as ¢;(«). We call the pair (K, ®) a CM-type of A. In
particular, by Proposition 3.13 of [Mil20], (K, ®) is primitive, i.e. it is not induced by a
CM-type of a proper CM subfield of K.

4.2.4 O-minimality and definable sets

In this section we will use the properties and results about o-minimal structures intro-
duced in Section For more details, we refer again to [vdD98] and [vdDM96].
For this chapter we will need a more general version of Proposition For a family

7Z CRM x RN = RM+N 3 positive integer d and a positive real number 7" define
Z7(d,T) :={(y,2) € Z: Ha(y) < T}

where H,(y) is the d-height given by Definition Let also 71, 2 be the projections of
Z to the first M and last N coordinates, respectively.

Proposition 4.10 ([HP16], Corollary 7.2). Let Z C RM* be a definable set. For every positive
integer d and every € > 0 there exists a positive constant ¢ = ¢(Z,d,e) with the following
property. If T > 1 and |mo(Z~(d, T))| > cT°®, then there exists a continuous definable function
0 :[0,1] — Z such that:

1. the restriction (g 1 is real analytic (since Ran, exp admits analytic cell decomposition);

2. the composition w o § : [0,1] — RM is semi-algebraic and its restriction to (0,1) is real

analytic;
3. the composition wy 0 § : [0,1] — RY is non-constant.

We conclude this section by showing that the set Z defined in (4.2) is definable in
Ran,exp
From now on, we use the term “definable” to mean definable in Ry, exp. A complex

set or function is said to be definable if it is definable as a real object, considering its real

71



4. UNLIKELY INTERSECTIONS IN FAMILIES OF ABELIAN VARIETIES

and imaginary parts separately. We may assume that 2, is embedded in some projective
space. By Theorem 1.2 of [PS13], there is an open subset U of H, x C¢ containing F, such
that the restriction of the uniformizing map w to U is definable. Since F is a semialgebraic
subset of H, x CY, it follows that u is definable when restricted to ;. Consequently, as C

is semi-algebraic, we conclude that Z is definable.

4.3 Reduction to the universal family of principally polarized

abelian varieties

In this section, we reduce to the case where A = 2, x,, 6 5, with § C A, a smooth,
irreducible, locally closed curve defined over Q. The results of this section are inspired
by Section 2 of [BC20].

The first result of this section allows us to perform finite base changes.

Lemma 4.11. Let C be as in Theorem[d.1} Let £ : S' — S be a finite étale cover and A' = AxgS'.
Let also p : A" — A be the projection map. Then, if the claim of Theorem holds for all
irreducible components of p~1(C), then it holds for C.

Proof. By the proof of Lemma 2.1 of [BC20] we have that p is flat and finite. By [Har77,
Corollary II1.9.6], we have that if X C A is an irreducible variety, then the dimension of
each irreducible component of p~1(X) is equal to dim X. Moreover, if X dominates S,
then every irreducible component of p~!(X) dominates S’. In particular, this shows that
the preimages of the flat subgroup schemes of A are flat subgroup schemes of A’ of the
same dimension. This implies that if C satisfies the hypotheses of Theorem then the
same is true for each irreducible component of p~!(C). Finally, the preimages of any point
of C lying in a proper algebraic subgroup of a CM fiber A,, where s € S(C), are contained
in proper algebraic subgroups of fibers of A’, which are still CM, since for s’ € 5’(C) and
s € S(C) such that {(s') = s, then A, = A.,. O

Next, let A and A’ be abelian schemes over the same curve S and let f, : A;, — A, be
an isogeny between the generic fibers defined over Q(S). Then, f, extends to an isogeny
[+ A" — Abetween the abelian schemes (see the proof of Lemma 2.2 of [BC20]).

Lemma4.12. Let A, A', f,, and f as above and C as in Theorem[4.1} Then, if the claim of Theorem
holds for all irreducible components of f~1(C), then it holds for C.

Proof. For every s € S, the map f, : A, — A, is an isogeny. In particular, the im-
ages and preimages of algebraic subgroups under f; remain algebraic subgroups, and
dimensions are preserved. Moreover, since isogenous abelian varieties have isomorphic

endomorphism algebras, it follows that A, is CM if and only if A} is CM. Now, consider
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the preimage under f of any intersection of C with the union of the proper algebraic sub-
groups of the CM fibers of A. Since this preimage lies in a proper algebraic subgroup of
a CM fiber of A, and by assumption the claim of Theorem holds for all irreducible
components of f~1(C), we conclude that the set of such points is finite. This proves the

result. O

Now, as S is irreducible, smooth and quasi-projective, by [GW23, Theorem 27.291],
we can take a relatively ample line bundle £ on A — S. This line bundle induces a
polarization on A — S of type D = (du,. .., dy). By [BL04, Proposition 4.1.2], the generic
fiber A, is isogenous to a principally polarized abelian variety A’, defined over a finite
extension of Q(S9). If we write this finite extension as Q(S’), with S” a smooth irreducible
curve covering S, we can use Lemma and assume that S’ = S. By Proposition
7.3.6 and Theorem 7.4.5 of [BLR90], A’ extends to an abelian scheme A’ — S. Since S
is smooth, using Lemma we can then assume that the polarization induced by L is
principal.

Then, by [Ge24, Lemma 2.2], there exists a finite étale cover ¢ : S’ — S such that
A = A xg S — 5 has level-3-structure.

Hence, since A, = A, 1 3 is a fine moduli space, there is a unique morphism ¢ : S’ —
Ay such that A’ is the pull-back of the universal family 2, — A, along ¢. Thus, we have

a cartesian diagram:

/ 1/

Ay S A
A

®
S/ ; S

Let S” = ¢(5") C A,. Since 5’ is an irreducible curve, ¢ : S — S” is either constant or
finite. However, ¢ cannot be constant, as A — S would be isotrivial. Thus, ¢ is finite. Up
to removing finitely many points from S’, we can also assume that S” is smooth, which
implies that ¢ is flat.

Note that

A =y xp, 8= (A xp, S") xgn S = A" xgn S’

which gives a morphism p : A" — A”.

Lemma 4.13. Let A” — S as above and C' C A’ be a curve satisfying the hypotheses of Theorem
Then, if the claim of Theorem[4.1| holds for C" = p(C'), then it holds for C'.

Proof. We start by proving that the hypotheses of Theorem 4.1/ hold for C”. Firstly, C”

cannot be contained in a fixed fiber A”,, otherwise

C'Cp () C Uy x {s €8 () =5"} .
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Since (' is irreducible and ¢ is finite, " C A, o x {s'} = A, for some s’ € S’ such
that ¢(s’) = s”, contradicting the assumptions on C’. Furthermore, since ¢ is flat and
finite, p is flat and finite as well. So, preimages by p of flat subgroup schemes of A” are
flat subgroup schemes of A’ of the same dimension, as in the proof of Lemma This
proves that C” is not contained in a proper flat subgroup scheme of .A”.

For a fiber Aj, = 2, ,(s), we have that p(A},) = A7
by p of subgroups of A’, are subgroups of A;’,(S,) of the same dimension. Therefore, the

= Ay o) = A. Also, images

images of the intersections of C’ with the union of the proper algebraic subgroups of the
CM fibers are contained in the intersection of C" with the union of the proper algebraic
subgroups of the CM fibers of .A”, which is a finite set by assumption. The conclusion

follows by using the fact that p is finite. O

Thus, for the remainder of the chapter, we assume that S C A, is a smooth, irre-

ducible, locally closed curve defined over Q, and A = Ry Xp, S.

4.4 Matrix bounds for endomorphisms of abelian varieties

Let A be an abelian variety of dimension g defined over C, so that A = C9/A for some
lattice A. Fix a polarization £ of type D = diag(di,...,dy) and letd = d; - ... - d, beits
degree. Fix also a symplectic basis A1, ..., Ayy of A and a basis ey, ..., e4 of CY such that
the period matrix of A with respect to these bases is (7,D), where 7 € H, (see [BLO04,
Section 8.1]).

As in Section denote by T, the fundamental domain for the action of Sp,,(Z)
on Hy, as described in [Igu72} Section V.4]. Fix a finite index subgroup I' of Spy,(Z) and
denote by Fr the Siegel fundamental domain for I'. Recall that §r was defined in as
3r = CJ o; - §g, where 01 = 194,02, ...,0, € Spy,(Z) is a complete set of representatives
for thé:rlight cosets of I in Spy, (Z).

In order to state and prove the result of this section, we introduce some matrix norms.

Definition 4.14. For a matrix M = (m;;)i<ij<n € Mat,(C) we define the following

norms:

* | Ml = H}%X|mi,jl;
9.

— n
e (Frobenius norm) ||M||; := /tr (MtM) = \/m,
ij=1

* (Spectral norm) ||M|, = /p (MtM ), where p(M) denotes the spectral radius of

M, i.e. the maximum of the absolute values of the eigenvalues of M.

Recall that the polarization £ defines a Rosati involution t (see Equation 1D ). Through-

out, rational representations are taken with respect to the symplectic basis fixed above.
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As established in [BL04, Theorem 5.1.8],
tr(pr(f1£)) >0

for any nonzero f € End’(A) := End(A4) ® Q. Hence, ||p,(f)l,, and \/tr (p,(fTf)) are

two equivalent norms on the finite dimensional Q-vector space End’(A). Thus, there

exist two constants ¢y, ¢co > 0 such that

et o (o (F1) < llor(F)lle < €2\ J5r (oo (£ 1))

for every f € End’(A). The aim of this section is to make the constants c1, ¢z effective by

proving the following result.

Proposition 4.15. Let A be an abelian variety of dimension g defined over C. Fix a polarization
L and choose bases of A and C9 as above. Consider the Rosati involution T on End®(A) defined
by L and assume that T € Fr. Then, for every f € End’(A), we have

sy VD) < oDl < e(4) - ix or(771)

where ¢(A) = (g, Fr) - ””;0 cmax {1, |Tm(Z,)|| Y27 3294 5(g, 3r) is an effective

positive constant depending only on g and the choice of the representatives of the right cosets of I’

in Spy,(Z) and Z; € §y is in the same Spy,(Z)-orbit as .

Let H be the Hermitian form associated with the polarization £, and let £ = Im(H)
be the associated alternating form, which satisfies E(A x A) C Z. According to [BL04,

Lemma 2.1.7], the form H can be expressed as:
H(u,v) = E(iu,v) + iE(u,v)

for every u,v € C9, with S(u,v) = E(iu,v) = Re(H (u,v)) positive definite. Let T be the
Rosati involution defined by the polarization £. By Proposition 5.1.1 of [BL04], we have

H{(pa(f)(u),v) = H(u, Pa(fT)(v))

for any f € End’(A) and for all u,v € C9. As in [MW94], evaluating this expression at

A1, ..., A2g and taking real and imaginary parts yields

pr(fT) =g 'Pr(f)t S=F"! 'Pr(f)t B

where, with a slight abuse of notation, we denote by S and E the matrices representing

the bilinear forms S(u,v) and E(u,v) with respect to the basis Ai,..., Ayg of A. If we
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denote R = p,(f), then
tr (pe(f1f)) = tr (SR SR).

Since S is positive definite, there is a unique upper triangular matrix U € Maty,(R) with

positive diagonal entries such that S = U'U. Substituting this decomposition, we have:
STRISR=UYU Y RIU'UR
vt (' RUY) - (URUTY) U

and the invariance of the trace under conjugation implies:
tr (pr(f15)) = tr (@' Q) = Q1%

where Q = URU L.

Furthermore, by the triangle inequality, for any M;, M> € Mat,,(C) we have

MMzl oo < nf[Millo - [[Ma]| o - (4.3)

Therefore, since R = U~'QU, we get

IRl = |v7'Qu| < (@o?- || 1U1) - IRl

|
lQll = [[vrRU™Y| < () |v7] - 1Ul) - 1Rl -
We now prove a few general results about matrices.

Lemma 4.16. If M € Mat,(R) is positive definite and T € Mat, (R) is an upper triangular
matrix with positive diagonal entries such that M = T" - T, then ||T|| ., < \/n||M|| .

Proof. We clearly have || M|, = ||T||3. Moreover, Nl <INy £ n||N| for every
N € Mat,(R) [GVLI3, Eq. 23.8)]. Thus, ||, < [|Tll, = /M|, < \/n][M]... 0

The following result is well known but we include it for completeness.
Lemma 4.17. For any matrix M € Mat,,(C), we have |det(M)| < n™/2 . || M||".
Proof. This follows easily from Hadamard’s inequality [Had93]. O

Lemma 4.18. Let M € Mat,,(C) be an invertible matrix. Then

nn/2

|27, = an

—1
M

Proof. The case n = 1 is trivial, so assume n > 2. Recall that M -1 = WC@, where C'

is the cofactor matrix (see also the proof of Proposition for details). By Lemma
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IC] < (n— 1)717_1 -||M ", which implies

n—1
1) 2 1 nn/2
M <

(

o < awDT

1 Vit
= . n .

O
Next, we compute S(u,v). Write 7 = X 4 Y, with X = (z;1)1<jr<g and Y =

(yj.k)1<j,k<g real matrices. Recall that for the bases (A1,...,\y) and (e, ..., e,) that we

fixed at the start we have

g9
\ kzxj,k'ek-i-yj,k'iek J=1...g
=

dj_QEj_g j=g+1,...,29

So, by doing the computations with the basis (e, ..., eg4, ie1,...,ie5) of W = A ® R, the

multiplication by i on W is represented in the basis (A1, ..., Ayy) by the matrix
-1
X D 0 -1,) (X D) YolX Y~'D
Y 0 1, 0 /\y o -D 'Y =D !XY"'X -D!Xy"'D/’
Hence, the matrix representing S(u,v) = E(iu,v) in the basis (A1, ..., Ayy) is given by

t
o YolX Y~'D 0 D
-D'Y -D'XY"'X -D'Xy~'D) \-D 0

(Xy—lx 1Y Xy—lD)

DY X DY'D
Furthermore, note that by [AMO05] Ex. 5.30]

det(S) = det(DY ~'D) det (XY 'X 4 Y) - (XY ~'D)(DY'D) " (DY ' X))
= det(D)? - det(Y 1) - det(Y) = det(D)? = d?
which also implies that det(U) = d, since S = U'U and U has positive diagonal entries.

Then, by Lemma 4.16, we have that ||U||, < 4/2¢/5]|,, and using Lemma 4.18 we
get

2q)9
o] < & o
9 9
< Qgmax{L[IS] 1) = = — - max {L|[S[|.}* -

Finally, in preparation for the proof of Proposition we establish some bounds for
matrices in §r. To this end, we first recall a few classical properties of the Siegel funda-

mental domain §,.
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Lemma 4.19. Let 7 = X + 1Y € §4. Then, we have:
(@) | X[l < 3
(b) det(Y) 2(@)92;
(c) |det(CT 4+ D)| > 1, for every (& B) € Spy,(Z).

Proof. Parts (a) and (c) are true by definition of §, (see [Igu72, p. 194]). Moreover, by
Lemmas V.13 and V.15 of [Igu72]

o= ()= () () = (5)

which proves part (b). O]

Proposition 4.20. Let 7 = X + Y € §r and let Z, € §, be in the same SpQQ(Z)—orbit as .
Then, there are effective positive constants &1, 02, 63, d4, depending only on g and the choices of

the representatives for the right cosets of I' in Spy,(Z), such that:
@ |V, <01 -max{1,|[Tm(Z)| 2"

®) [[Xlloo < 02 - max{1, [Im(Z;)[| }*;

3 ]
297
max {1, |[Im(Zr)l| .}

(c) det(Y) >

(@) ||y, < 64 max{1, |[Im(Z,)| .} 9+

Proof. Let T and Z, as above and take o = (4 B) € Spy,(Z) such that 7 = o - Z;. The def-
inition of Fr (see (4.1)) implies that we can take o to be one of the chosen representatives
o1,...,0, for the right cosets of I in Sp,,(Z) and thus all the constants that appear will

depend on the choice of such representatives.

(a) Itis well-known that
-1 _ -1
Y =1Im(r) =Im(o - Z;) = [(CZ, + D)'| " 1m(Z;) (CZ; + D) (4.5)
(see for example [Igu72, Section 1.6]). So implies that

¥l <o |2+ D)7 - Jm(z,)]

since || - ||, is invariant under transposition and complex conjugation. Then, as
Z, € §4, Lemma[#.18 and Lemma c) imply
1 g*/* -1 2 -1
|cz.+ D)7 < |CZ, + D55 < % - |CZ, + D|&".

o = |det(CZ, + D)]

78



4.4. MATRIX BOUNDS FOR ENDOMORPHISMS OF ABELIAN VARIETIES

Moreover,

1CZr + Dlloe < 9lICllc 147l + 1Dllog

59 (4.6)
< - max{[|Cllee, [IPlloo} - max{L, [[Im(Z-)lloc }
since Lemma [4.19(a) implies
1Z7]lc +1 < [IRe(Z7)]| o + [Tm(Z7)]| o + 1
4.7)

3 5
< S m(Z0)ll < 5 - max{L, [Tm(Z0) .}
Combining the inequalities above yields

2
IVl < % (€2 + D)7+ im(2;)

oo
< gg+2 NCZ: + DHig_Q | tm(Z7)
5

2g—2
<(3) o max{IClle D)} max(1, (2|

[

2g—1
oo}g :

2g—2
Hence we can take §; = (g) I gt e X }{max{||CHoo DN 32

(b) We have that

|X]lo = IRe(o - Zo)llog < o Zrlloe = | (AZr + B)(CZr + D)7

<g-14% + Bl - (€2 + D)7 _

<9 (914l 12l + 1Bl) - |2, + D)

o0

From the computations above we also have that

|z + D)7 < 102 + DI

5\9° 1 5 - -
<(3) 9B max{|Cll D]} max{L, [Im(Z)]l }*

This implies that
5\ Bg41y 1 9
XNl < {5) 9277 llolice max{l, [Tm(Z:) ][}
_ (5)? 3941 9
Hence, we can take 3 = (5) g2 max {0}

oc€{o1,..,on}

(c) Taking the determinant of the first and last part of Equation yields

= de -1, et(lm - de Z: = det(Im(ZT))
det(Y) =d t(CZ-r +D) d t(I (ZT)) d t(CZT +D) |det(C'ZT —I—D)’T
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Furthermore, it follows from Lemma and Equation that

|det(C'Z, + D)| < ¢°/2 - CZ, + DII%,

5\ 9
< (3) 9 max{[Cll 1Dl }* - (L, [1mn(Z,) )7

Therefore, using Lemma . 19(b), we get

2
@)"
2

det(Im(Z. 2)%9.g39.max{||C||_.|D[| . }**
det(Y) = (Tm( ))22(> g% -max{ 25
|det(CZ; + D)| max{1, ||[Im(Z:)|| .}

2 N2
so that we can take d3 = (?)g (%) Y.97% . max }{mawc{HCHOo DIl 3%,

c€{01,....,0n
(d) Applying Lemma and parts (a) and (c) yields

9/2 g—1
-1 < 9 9-1 ~ 9/2 . N 2g%—g+1 _
[ < dory IVl < 97~ max{L, [Im(Z7) ..}

g—1
Thus, we can take 6, = g9/ - %.

t
We are now ready to prove the main result of this section.
Proof of Proposition We already proved that
1Rl < (@92 [[U7Y] - 1Ulle) NQle s QI < (2907 U7 - 1011 ) -1 Rl -

Now, by Equation (4.4), we have that

2g)%
Ul < 20 P02 s 1,810} - (20)" - 151147

(29)%9+3
d

oo

[e.9] . ‘
< max {1, |5 .}
Let 7 = X +4Y. Then, using (4.3), we get

15|, = max {ny—lx + YHOO :

xv-in]

oy

pr=o|_j

< max {||V |, + g 1X 1% Y7 o 11 [y 1Dl g IDI% [y}

Moreover, if 7 € 3, let Z, € §, be in the same SpQQ(Z)—orbit as 7, as before. Then, by
Proposition we also obtain:

2 - 292 1
1Yl + @ IXIE Y1 < 26%0384 - max{1, [1m(2,) )20+,
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_ 29241

g 1X o ||Y 7Y _ DIl < 6?0201 D], - max{1, [Im(Z7)]| 1>
2 - 2 292 —g+1
g IDIZ Y] < g4 IDIZ - max{1, [m(Z,) | 120"

So, we get

11l < max {|IVll + g 1X 12 Y7 o 1l [Y 7Y _IID I o IDI Y7}

< 292036, ||D 1%, - max {1, [Im(Z,)]| . }* o+
Thus,
- (29)%0+3
297 U] M0l < 22 max (1, 1,177 < e(4)
where
D22

C(A) = 229+4 . 929+5 . 6%54 . max {17 HIm(ZT)”OO}Qg3+3gQ+29+1 .

d

Note that § = 229+4 . ¢29+5 . 525, is an effective positive constant that depends only on g
and the choice of the representatives for the right cosets of I' in Spy,(Z).

Therefore, we have that
IRl < e(A) - 1@l < c(A) - 1QlI
1
— < < . .
5 1Rl < 1Qlloe < ¢(4) - [[Rll
Recalling that R = p,(f) and ||Q|| z = \/tr (p(fTf)) concludes the proof. O

Remark 4.21. If I' = Spy,(Z) (so that §r = §,4 and Z; = 7), one can obtain a better value

for the constant ¢(A), namely

2(g+1) 2g+2
2v3\’ D|%
C(A) — 9dg+5 gg2+3g+3 . <\3/§> . H”;O ~Inax{1, ||Im(7')”oo}g(g+1) .

The argument is the same as in the proof above, but here one may use the sharper bounds
specific to §, given by Lemma instead of Proposition
4.5 The main estimate

For every T' > 1 we define the set

Z(T) = {(r,2) € Z: 3IM € Mat,(C) \ {0} sit.

Mz e 79 + 1779, Hoy(7), Hyg(M) < T and det(Im(7)) >

N~
——
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where Z is the set defined in and Hy, is the height defined in Definition
We want to prove the following upper bound for the cardinality of Z (7).

Proposition 4.22. Under the hypotheses of Theorem 4.1} for all ¢ > 0, we have #2Z(T) <. T¢,
forallT > 1.

In order to prove this, consider the definable set W whose elements are tuples of the
form

(al,ly oo 7ag,g7ﬁ1,17 v 7/89,97/1’1,17 ceey Hl,gs 2,15 - - -5 U295
T1y s Tggs Yl s Ygugs Uls - -3 Ug, VL, ..., Ug)

in R49°+29 » R29 , satisfying the following relations:

M#O’ (T,Z)EZ, MZZ,LL1+T,U'2

where

M = (qij +iBij); o1 40 M1 = (B2, g) s e = (H21s - p2,)

T=(Tij +1Yij); oy g0 2= (21,1, 2g)" = (uy + v, ... ug + iv,)

and i is the imaginary unit. In particular, for 7" > 1, let
W~ (29,T) .= {(a1,1,...,v9) € W Hoglan1,...,Yg9) <T}.

Recall that Hag(cv1,1,- - -, Yg,g) is finite if and only if a1 1, . . ., 4,4 are all algebraic numbers
of degree at most 2g.

Now, let 7, m be the projections on the first 4% + 2¢g and the last 2g coordinates,
respectively.

Lemma 4.23. Under the hypotheses of Theorem 4.1} for every ¢ > 0, we have

#Hme (W™ (29,T)) < T°
forallT > 1.

Proof. Consider an arbitrary € > 0 and assume that for some T, > 1, #mo (W™ (2g,Tp)) >
cT§, where ¢ = ¢(W, 2g, ¢) is the constant given by Proposition[4.10]

Then, by Proposition [4.10} there exists a continuous definable function § : [0,1] — W
such that 0; = 7 04 : [0,1] — R%°+2 js semi-algebraic and §2 = mg 04 : [0,1] — R
is non-constant. Hence, there exists an infinite connected J C [0, 1] such that §,(J) is

contained in an algebraic curve and d>(.J) has positive dimension.
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Let M, 7, pu1, p2, 2 = (21, ..., z4)" be as above and consider the coordinates
Q11y--- ,Oég,g,ﬁl’]_, HE 7/69,97 M1y H1,gs M2,15 - -5 U2,
T1,15--+92g,g: Y115+ -+, Yg,gs ULy -+, Ug, V1y ..., Vg

as functions on J.

Note that 7 cannot be constant on .J, otherwise there would be infinitely many points
on C (since d2(J) has positive dimension) that lie on the same fiber, which contradicts the
assumption that C is not contained in any fiber.

Moreover, on J, the functions o 1,...,yg,4 generate a field of transcendence degree
at most 1 over C, because they are functions on a curve. Therefore, on .J, C(r) is a field of

transcendence degree 1 over Cand a1, . .., 2, € C(7). Since M # 0and Mz = p11+7 2,
it follows that z,..., 2, are linearly dependent over m In particular, z,...,z, are
algebraically dependent over F' = C () on J.

Now, consider the set W = (7,2)(J) C Z. As the restriction of § to (0,1) is real
analytic, we can view 7 and z as holomorphic functions on u(W) C C(C). Then, 7 and =
satisfy an algebraic relation on u() which can be analytically continued to an open disc
in C(C).

Therefore, we have tr.deg.pF' (z) < g on an open disc in C(C), contradicting Lemma
and thus proving the proposition. O

Lemma 4.24. There exists a positive constant ¢ = ¢ (Z) such that for all z € C9 and for all
T > 1, there are at most ¢’ elements T € H,, such that (t,z) € Z(T).

Proof. Let
T: 2 —CI

(T,2) — 2

Fix 29 € CY. By o-minimality, if 7~!(20) has dimension 0, then Proposition implies
that its cardinality is uniformly bounded by a constant depending only on Z. Therefore,
it suffices to show that for any T' > 1, if zg € 7(Z(T)), then 7 !(z() has dimension 0.
Now suppose that it has positive dimension, and let 7y € H, be such that (79, 2z9) €
Z(T). Then zy and 7y are algebraically dependent over C, and this relation extends to the
whole 7(zp), hence to an open disc in C(C). This contradicts Lemma O

Proof of Proposition If (1,2) € Z(T), then there exists a matrix M € Mat,(Q) satisfy-
ing Hyg(M) < T, and vectors ji1, 2 € Z9 such that

Mz = py + Tus.

If we write M = (mivj>1§i,j§g and 7 = (Ti7j)1§i7j§g, then, for every i,j = 1,...,g, we can
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use Lemma[4.71and deduce

Imi ;| < /29 + 1H2y(M) < T, 715l < V294 1Hay (1) < T.

Furthermore, since z = (z1,...,24) € L, there exist u,v € [0,1)Y such that z = u + 7v.

Thus, foreachi =1,...,g, we get

g g
u; + ZTi,jUj <1+ Z ’Tm“ < T.

|2i| =
Jj=1 J=1
As a consequence, for every i = 1,..., g we have
g g
Y omigzi| <D magl |zl < T (4.8)
j=1 j=1

Since Mz = py + Tug, we have Im(7)uz = Im(M z) and thus

lelloe = [In(r) ™" Im(Mz)| < gftm(m) 7| - Jm(2)]

o0

and, by Lemma(4.18, we get || Im(7)~!||__ < go/2

-1 _1
o < @ty ML < 92T 7|+ < 19
Hence, using (4.8), we obtain

lpall oo < g [Tm(r)7H| - (M) | < T | Mz, < T

o
Moreover, we have p; = Mz — Tus, so that
liilloe < 1Mzl + ITp2ll0 < 1M 2llog + g lI7lloo - 2]l < T2+ T - T9%2 < T972.
This allows us to deduce that
(Re(M),Tm(M), p1, pi2, Re(7), Im(7), Re(2), Im(2)) € W™ (2g, vT93)

for some positive constant v. Then, by Lemma each element of 7o (W™ (2g, vT93))
corresponds to at most ¢’ distinct elements of Z(T'). Finally, the proof follows from
Lemma .23 O

4.6 A height inequality

The aim of this section is to give a bound on the canonical height of the points P € C(Q)
in terms of the Faltings height h (A, p)) of the corresponding fiber. In order to do that
we recall the setting of Theorem [4.1] and the reductions made in Section and also
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define some height functions that will be used to prove this bound.

Let S C Ay = Ay1 3 be a smooth, irreducible, locally closed curve defined over Q,
let A =24y xu, 5, withm: A — S being the structural morphism, and let C C A be an
irreducible curve as in Theorem[4.1] Recall that A has a level-3-structure and that there is
a principal polarization A : A — A, where A denotes the dual abelian scheme of A.

By [GW23, Proposition 27.284], the pullback of the Poincaré bundle & via the mor-

phism (id 4, A) is relatively ample. Thus, the line bundle
L= [(ida,\)* 2 @ [-1](ida, \)* 2]*°

is relatively very ample (see [GW23, Theorem 27.279]), symmetric and ®; = 12\. This
line bundle gives an embedding A — P = ]P% x S. Moreover, for every fiber A of
A — S, the induced closed immersion A, — P% comes from the restriction £ = L] 4,.

The minimal compactification A, 1 3 of Ay 1 3 can be realized as a closed subvariety of
some projective space ]P’% and we define M = Opn (1)\%—13 Thus, we obtain an embed-
ding Ay 13 — IP%} and we denote by S the Zariski closure of Sin A, 13 C P%L'

We then denote by A the Zariski closure of A inside IP% x S C ]P% X JP’%? and let
L =0(1,1)|3 = L& 7*(M]g). Using the properties of the Weil height (e.g. Theorem@

or [HS13, Theorem B.3.6]), we define the naive height on A(Q) as

hZ,Z(P) = hAﬂ'(P)v‘C‘/r(P) (P)+ hE}m\g(ﬂ(P))-

Moreover, as £ is symmetric, we can also define a fiberwise canonical height b _ ., 2
as in Theorem

Furthermore, recall that the coarse moduli space A, 1 of principally polarized abelian

wpy (P)

varieties of dimension ¢ is a quasi-projective variety. More precisely, its minimal com-
pactification A, 1 can be realized as a closed subvariety of some projective space IP’%.

Let L = Opl(l)|m. Then, by [FW12] Section I1.3], L has an Hermitian metric on
Ay 1 with logarithmic singularities along A, 1 \ Ay 1. Hence, we can define two height
functions: Az, on A, ; using the metric cited just now; and h, on A, ; given by the Hermi-
tian metric which at the archimedean places is the standard Fubini-Study metric coming
from the embedding of A, ; into ]P’f@ and at the non-archimedean places is the usual met-
ric. Note that h, differs from a fixed Weil height hi L by a bounded function on P*(Q)
(see [BGO6, Remark 2.8.3]).

From this point forward, {1, &>, . . . will be positive constants depending only on g, S,

A, C and the choices of the various Weil heights, unless otherwise specified.
Proposition 4.25. There exist positive constants &1, o such that

?LAW(p),EW(p) (P) < gth(Aw(P)) + &2
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for every P € C(Q).

Proof. By [FW12, Theorem IL.3.1] there exist positive constants {3, {4 depending only on
g such that

|hr ([A]) =& - hp(A)| < &

for every principally polarized A/Q of dimension g. Here, we denote by [A] the isomor-
phism class of A in A;;1. By [FW12, Lemma II.1.2, last displayed equation], there are

positive constants &5, £, depending only on g, such that
i, ([A]) = o, ([A])| < &5 + €5 log max {1, Tor ([4]) }

for each [A] € A, 1. In particular, this means that iy, ([A]) < hy, ([A]) +1, which combined
with the inequality above yields %y, ([A]) < hr (A) + 1. As noted above, &y, differs from

h by a bounded function, so we get

Ag1,L
M ([A]) < hr(4) + 1 ®9)

for every principally polarized A/Q of dimension g, where the implied constant depends
only on g and the choice of the Weil height h@, L

Let p : Ag13 — Ay 1 be the natural morphism which forgets the level structure. It
extends to a rational map

ﬁ : A97173 -2 Agzl'

Let S’ be the Zariski closure of p(S) in Ay and fix Weil heights hg M= and hg g, -
— — ’ S
Therefore, as dim S’ = dim S and p|g : S --» 5" is dominant, Theorem 1 of [Sil11] yields

positive constants &7, & and a non-empty Zariski open set U; C S such that

h§,M\§(S) <& hg ), (P(s)) + &8

for every s € U1(Q) C S(Q). Since dim S = 1, U; is obtained by removing finitely many
points from S. Note also that p is well defined on S and it is equal to p. Thus, we deduce
that

hg ai(8) = & b~ 1 (p(s)) + &

for every s € S(Q). Combining this with gives

hig p(8) < o - hr(s) + &uo (4.10)

for every s € S(Q) and for some positive constants &g, &19. Note that hp(p(s)) = hp(s),
since the Faltings height is independent of the level structure.

Now, let C be the Zariski closure of C inside A C ]P’% X IP’%. As C is not contained in
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any fixed fiber of A, we have that 7|¢c : C — S is surjective and thus we get a dominant
rational map 7|z : C --» S. As above, Theorem 1 of [Sil11] yields positive constants

&11, &12 and a non-empty Zariski open set Uy C C such that
ez (P) < &1 g pg (T(P)) + &2

for every P € U(Q) C C(Q). As before, we can assume that Us contains C, so that
hz2(P) = &u - hg g (7(P)) + &2 (4.11)

for every P € C(Q). Observe that hz Yo is equal to the restriction of the naive height h =
_ ie s
toC.
Finally, by Theorem A.1 of [DGH21], there exists a positive constant &;3 such that

EAﬂ(p>,[:Tr(p) (P) S hZ’Z(P) + 613 - max {17 h§7M|§(7T(P))}
for every P € A(Q). Combining this with (4.10) and (4.11) we get

EAMP)vﬁw(P) (P) < &uahr(Arpy) + 615

for some positive constants £14, {15 and for every P € C(Q). O

4,7 Arithmetic bounds

Recall the setting of Theorem 4.1/ and the reductions made in Section let S C Ay =
Ay 1,3 be a smooth, irreducible, locally closed curve, and let 7 : A = R4, x, S — S. Let
C be as in Theorem |4.1and define C’ as the set of points P € C(C) such that A, (p) has
CM and there exists a nonzero endomorphism f € End(A,p)) satisfying f(P) = O (p).
Equivalently, P lies in a proper algebraic subgroup of A (p).

Assume that S, A and C are defined over the same number field k. Notice that if

P € C(C), then A, (p) is defined over k(7 (P)) and, since 7 is non-constant,
[k(P) : k] < [k(m(P)) : k] < [k(P) : k]. (4.12)

Moreover, since C is defined over Q and complex abelian varieties with complex multi-
plication are defined over Q (see Proposition 26 from Section 12.4 of [Shi98]), it follows
that 7(P) € S(Q) C Ay 13(Q) forevery P € C'. By , this shows that C’ is a subset of
C(Q).

From this point forward, 71,72, . . . will be positive constants depending only on g, .S,

A and C, unless otherwise specified.
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Lemma 4.26. Let A be a CM abelian variety of dimension g defined over a number field K. Then
there exist positive constants ~y1,vo depending only on g such that hp(A) <~ - [K : Q]2

Proof. By [Sil92], there exists a finite extension K'/K of degree at most 2 - (9¢)* such
that all endomorphisms of A are defined over K’. Théoreme 6.1 of [Ré17] (see also the
remarks following its proof) then guarantees the existence of abelian varieties A, ..., A;
defined over K’ and positive integers e, ..., e; with the following properties: each A;
is K’-simple, the A; are pairwise non-isogenous over K’, Endy/(4;) = Endz=(4;) is a
maximal order in End%(Ai), and A is K'-isogenous to A’ := [['_, AS". So, there exists an

isogeny ¢ : A’ — A with
deg ¢ < 43 - max {hp(A"), [K': Q}™,

where 3, 74 are positive constants depending only on g, by [GR14a, Théoréme 1.4].

Since A has CM, each A; has CM as well, and we may consider the corresponding
primitive CM types (E;, ®;). Note that Endg/(A4;) = Op, by construction. Then, by
Corollary 3.3 of [Tsil8], there is a positive constant v5; depending only on g such that
hr(A;) < |Disc(E;)[". In addition, Theorem 4.2 of the same article yields positive con-
stants 6, 77, again depending only on g, such that |Disc(E;)| < v - [K' : Q]"". Combining
these two estimates gives

hp(4;) <7s- [K' Q™

for some positive constants 7g, 9. Since for abelian varieties A and B over a number field
one has hp(A x B) = hp(A) + hr(B), it follows that
t t
hF(A/) = hF <H Afz> = Zei . hF(AZ) S Y10 * [K, . Q]Vg .
i=1

=1

Applying [Fal83, Lemma 5], we deduce

hp(A) < hi(A) +  log(deg 6)
< hi(4') + T logmax {hp(4'), [K': Q1} + 711

<72 [K':Q]™.

where 717 is a positive constant depending only on g.

Finally, recalling that [K’ : K] < 2 (99)*9, we obtain
hp(A) <o [K': Q] <mg- [K : Q)™

for suitable positive constants 713, y14 depending only on g. O
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Before proving the next lemma, we introduce a special Z-basis for End(A). Let A be a
principally polarized abelian variety of dimension g, defined over a number field K, and
let T denote the Rosati involution defined by the principal polarization. By Lemma 5.1
of [MW94] and Lemma 2.1 of [MW93]], there exist positive constants v;5, v16, depending
only on g, together with a Z-basis 1, ..., pn of the additive group End(A) := End(A)
satisfying

tr (pr(lpi)) < a5 max {[K = Q] hp(A)} 70

forevery ¢ =1,..., N. Moreover, by [BL04, Proposition 1.2.2], one has N < 4q°.
If A is CM, then Lemma further implies that ¢1, ..., px satisfy

tr (pr(plei)) < v [ Q™ (4.13)

for suitable positive constants 77, y1s depending only on g.

Note that, for every s € S(Q), the line bundle £; = L] 4, introduced in Section
defines the same Rosati involution as the one defined by the principal polarization A, :
A, — A,, since O, =12,

Lemma 4.27. Let Py € C' and define o1, ..., N € End(Ay(p,)) as above. Then, there exists a

non-zero endomorphism
N

fPo = Zami S EHd(AW(pO))

=1

such that f, (Po) = Og(py) and

max {|a1], ..., an|} < vio [k(F) : Q7
for some positive constants y19, y20.

Proof. Since Py € (', there exists a non-zero f € End(A,(p,)) such that f(Fy) = Or(p,)-
Writing f = IV, b;p;, we see that the N points ¢1(F),...,pn(P) are linearly depen-
dent over Z. Then, by Proposition 6.1 of [BC20] (which relies on a result by Masser
[Mas88]), there exist integers a1, ...,an, not all zero, together with positive constants

V21,722, V23, Y24 such that

N
fr(Po) =Y aipi(Po) = Or(py)
=

and

V24

N—-1
T 2
e {lail} < a1 [6(Fo) - QP max {Ria gy oy (il P 1} T (hr(Axry) +723)

Here we used [MW93], Lemma 2.1] to ensure that the ; are defined over a finite extension

89



4. UNLIKELY INTERSECTIONS IN FAMILIES OF ABELIAN VARIETIES

of k(m(FPp)) of degree bounded by a function of g; this implies that the points ¢;(Fp) are
defined over a field of degree <, [k(P) : Q).

By (2.4), Corollary and ({#.13), we also have that

~

1 + ~
hliy iy (i P0)) < 5 00 (e (0100)) -ty vy (P)

< o5 [K(P0) : Q"™ - Ty 21 py) (P).
Moreover, Proposition shows that h, Ay -LrPo) (Py) < va6h F(Ax(py))+727- Hence,

iy ncryy (Pi(P0)) < 25 [K(Po) = Q7 - (yashur (Ar(py) + Y2r)-

Since N < 4¢” and A, (p,) has CM, this implies

N—-1

~ Y24
@Egvﬂaﬂ} < o1 [k(Po) : Q" 'm?X{hAﬂ(pO),cﬂpo)(sOi(Po)), 1} ’ (hF(Aw(PO)) + 723)

Y24

< yos [k(Po) : Q) - (’726hF(A7r(PO)) + 727) 0 (hF(Aw(PO)) + 723)
< 30 [k(Po) - Q)™

by Lemma O

Now, let Py € C’ and choose 7p, € u; *(7(Pp)) N §r, where T' = 'y 3, §r and the
uniformization map u, : Hy; — Ay;3(C) were introduced in Section The set
uy H(m(Py)) N Fr contains a single element unless some preimage of 7(Fy) lies on the
boundary of §r, in which case it contains O(g) elements.

Let Zp, € §, be a point in the Sp,,(Z)-orbit of 7p,. Then one can choose a symplectic
basis of the period lattice of A (p,) such that the corresponding period matrix is (Zp,, 1),
once the level structure is disregarded In the sequel, we fix this symplectic basis, and
all analytic and rational representations of endomorphisms of A p;) will be defined with
respect to it.

Since Ay (p,) has CM, it is known (see for instance Section 6.2 of [I5i18] or [Shi92]) that

[Q(ZP()) : Q] < 29~

Moreover, if we write 7p, = 0 - Zp, for some o € SpQQ(Z), then we easily see that Q(7p,) C
Q(Zp,), since o has integer entries.

We now establish bounds for the heights of 7p, and Zp,.

Lemma 4.28. Let Py € C' and let Tp, and Zp, be as above. Then, there are positive constants vsa,
Y33, V34, V35, such that Huayx (Zp,) < v32 - [k(FPo) : Q" and Hyax(7p,) < v34 - [R(Fo) : Q]33,

'Tf the level structure is taken into account, then one can choose a symplectic basis so that the period
matrix is (7p,, 1).
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where H .y is the entry-wise height on Matg(@) defined in Section m

Proof. Since Ar(p,) has CM, Zp, is a CM point in §,. Thus, by Theorem 1.3 of [PT13]
together with Theorem 5.2 of [Tsil8], there exist positive constants 3¢, 37, 738, 739, de-

pending only on g, such that

Hinax(Zpy) < s - # (Gal(@/Q) - () ™" < s [R(P0) : Q. (414)

Now, take o = (4 B) € Spy,(Z) such that 7, = 0 - Zp, = (AZp, + B)(CZp, + D).
Recall that the definition of §r (see ) implies that we can take o to be one of the
chosen representatives o1, ... ., o, for the right cosets of I' in Spy,(Z).

Then, using Proposition we get

Hmax(TPO) <g- Hmax(AZPO + B)g : Hmax((CZPo + D)71>g
<<g HmaX(AZPO)gHmaX(B)g : Hmax(CZPO)294793Hmax(D)2947g3
Ky Hinax (A7 Hinase(B) Hinax (C)? 79" Hynax (D)9 =9 - Hya (Zp,)%° 949"

This implies that there exist a constant 749, depending only on g and o, such that
H < H Z 295_ g4 +92
max (TPO ) = 740 max( Py ) .

Taking the maximum of all such constants over all possible choices of o € {o1,...,04,},

we get a constant 4, that depends only on g and the choice of o1, ..., oy, such that
2g5 _g4 _,’_92
HmaX(TPO) < 741Hmax(ZP0) .

Finally, substituting the bound (4.14) for Hy,ax(Zp,), gives the desired bound for Hyax(7p, ).
O

Lemma 4.29. Let Py € C" and [, be the endomorphism given by Lemma[d.27) Then, pa(fy,) €
Mat, (C) has algebraic entries and Ho, (pa(fpo)> < a2 - [k(Py) : Q]72, for some positive con-

stants 42, Va3

Proof. Write Pr(fpo) = (%; %ﬁ), where M, = <m§?)1<”<g € Maty(Z) for ¢ = 1,2,3,4.

Then, by Equation 1), pa(f,,) = Zp, M2 + My, as Ax(p,) is principally polarized by
assumption. This proves that p.(f, ) € Maty(Q(Zp,)) C Maty(Q). Note also that all
entries of p,(f PO) have degree at most 2g.

Hence, Proposition implies

Hmax(pa(fpo)) S 2Hmax(ZPOM2)HmaX(M4) S QQHmax(ZPO)gHmaX(MQ)gHmaX(Mél)

g+1 g
<29 pr (||, Huax(Zr,)

o0
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and, by Lemma@
Hag(pa(F ) < 27 Hunas(pa( 7)) < (49)7 - )| ™ Hna 21,
Furthermore, since fPO = Zf\il a;p;, we also have
N
pr(fey)|| ) Z ail - | pr(04)]
<N- max{\all oo an ]} - max {flor(@0)l o }-

By Proposition there are positive constants 744, 745 such that
1019 loo < a0 - max {1, [Im(Zp,) [} - \[or (pr(le))-
We then use Lemmaf£.7jand Lemma to get

M (Zp)lloo < I1ZPolloe < V29 + 1+ Hag(Zp,)

(4.15)
< 2%9\/2g 41 Huax(Zp,)* < s - [k(Po) : Q7
which, combined with (4.13), implies that
1or(0i)lloe < s - [k(Po) : Q™.
Moreover, we use Lemma [4.27to bound max {|a1|, ..., |an|}, so that
pelfy)|| o < 467 max {Jaa], - an]} - max {lpr(o0) oo} < 350+ [(K(P) = Q™
Finally, we get
29(g+1) 2
Hag(pa(fr,)) < (49)% - [pr(Fo)|[ " - Hunax (Z)
2
< (49)% 50 - [K(Po) - QI -3 - [K(Py) : QPO
< 52 - [k(Fo) - QI
by Lemma[4.28 O

Lemma 4.30. Let Py € C' and let Tp, be as above. Then, there are positive constants ~ys4, 55

such that
V54

det(Im(7p,)) > ToB) : QP

Proof. By Proposition{4.20, we have that det(Im(7p,)) > d3 max{1, |[Im(Zp,)| .} /. Hence,
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(4.15) implies that

1) 3 63

At 2 S M Z 1y~ 7~ o) - QP

which gives the desired bound. O

4.8 Proof of Theorem 4.1

We need to establish the finiteness of the set C’, introduced at the beginning of the previ-
ous section.

Let Py € C’ and let o € Gal(k/k). We aim to show that o(P) € C'.

Since the abelian varieties A, ;(p,)) and A, (p,) have isomorphic endomorphism rings,
it follows that both are CM abelian varieties. Moreover, the action of o sends subgroups
of Ay (p,) to subgroups of A (,(p,)), preserving their dimensions. Consequently, if I is
contained in a proper algebraic subgroup of .A;(p,), then o(F) must be also contained in
a proper algebraic subgroup of A, (p,)). Thus, o(F) € C'.

To simplify notation, we set dy := [k(P) : Q] = [k(c(F)) : Q]. Then, Lemma[4.27)and
Lemma {4.29| imply the existence of a nonzero endomorphism f;(p;) € End (AW(U( po)))
such that

fo(py) (0(F0)) = Ox(o(py)) and  Hag (pa(fa(Po))) < g - dgt.
Moreover, combining Lemmas [4.7]and yields
Hag(To(pry)) < 2% - Himax(Zpy)*? < 756 - dg".
In addition, Lemma gives the lower bound

det(lm(Ta(Po))) > da/55 :

Hence, as o varies in Gal(k/k), the elements of u~!(o(P)) N F, are all contained in the set
Z(vd]}), where Z(T) is the set defined at the start of Section|4.5, with v = max {742, V56, 7—24}
and 7 = max {43, V57, V55 }-

However, the argument above implies that there are at least dy/[k : Q] distinct points
in u=t(c(Py)) N F, that are contained in Z(vd]). Applying Propositionwith €= ﬁ,
we deduce that dj is uniformly bounded for all Py € C'.

Hence, by Lemma the Faltings height hp (A (p,)) is bounded above by a constant
independent of Py € C'. In view of (4.10), it follows that the height hg’ Mz is bounded
on 7(C") C S(Q). Consequently, 7(C’') C S(Q) is a set of bounded height and bounded
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degree, as [k(m(F)) : Q] < do. Since M|y is ample, the Northcott property of the Weil
height (part (6) of Theorem 2.22) ensures that 7(C’) is finite.

Therefore, C’ is contained in the intersection of C with the union of finitely many fibers
of A — S. As C is irreducible and not contained in any fiber, we conclude that C’ itself is

finite.
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